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ABSTRACT

This thesis studies two topics in the theory of nonlinear
filtering; the use of multiple s-ochastic integrals to analyze filters,
and the use of Lie algebraic and 3perator-theoretic techniques to
discover new, finite-dimensionally solvable filtering problems.

The main results of the multiple integral techniques are:

I. A simpler and more insightful proof of a result of
S. Marcus on filtering polynomials functions of a
Gauss-Markov process.

2. A formula for representing the product of two multiple
integrals as a sum of multiple integrals, thus providing
a rudimentary calculus of multiple integral expansions.

3. An expansion of the optimal mean square filter as a
ratio of two multiple integral expansions.

4. Integral equations for the kernels of the best mean
square filter of the class of (finite) rth order multiple
integral expansions.

The problem of estimating a diffusion process observed in
white noise is studied with Lie algebra techniques. Necessary con-
ditions, and in the scalar case, necessary and sufficient conditions,
are given for estimation algebra finite dimensionality. Examples of
scalar problems with fin. dim. estimation algebras are discussed, and
it is shown that, from among them, no new cases exist for which makai's
equation can be solved by a Wei-Norman type method.

Thesis Supervisor: Sanjoy K. Mitter
Title: Professor, OeDartment of Electrical Engineering
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CHAPTER 1: INTRODUCTION

1.1 The Nonlinear Filtering Problem

Nonlinear filtering theory is the study of a broad range of

problems in the estimation of stochastic processes. A typical

example concerns the estimation of a signal in additive noise. In

this situation, one is interested in the properties of a stochastic

process {x(t)jt>O1 called the signal. One might want to know, for

instance, the value of f(x(t)), for a function f, or even the

value g(x(s);O<s<t) for a functional of the past of x(.) up to time t.

However, information about x(.) is available only through observation

of the process

h(t) = rth(s,x(s))ds + w(t) ( .)
t 0

in which h is a given function and w(t) is a "noise", usually an

independent increments process. Thus estimates, or rather, filters,

for f(x(t)) and g(x(s);O<s<t) must be constructed from {y(s) O<s<tl.

Minimization of the mean square filtering error is the

criterion generally chosen to guide filter design. Thus, in linear

filtering theory the goal is to produce the best (mean square)

estimate that is a linear functional of y(s)!O<sdt}. Nonlinear

filtering theory goes further; it asks for the best mean square

estimate given the past of y(.). If Ef2(x(t))<" and if Fy denotes the
t
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a -algebra o{y(s)IO<s<t}, it is well known that this estimate is

f) = E{f(x(t)) FY}. The goal of nonlinear filtering is to com-

pute or to approximate this conditional expectation.

Interest in filtering problems stems from their central role

in several applied subjects. For example, in the theory of com-

munication (Van Trees [48]), (1.1) is a common model for a signal

sent in a noisy channel; successful transmission of information re-

quires extracting the signal from the noise. It may also be

necessary to decide on the basis of {y(s) s<t} between two

possibilities, h(s,x(s))-O, s<t, or h(s,x(s)) = a given signal.

This "signal detection" problem is closely related to optimal

filtering (E. Wong [46 ]). Stochastic control problems, in which

a control is to be chosen so as to influence signal process be-

havior, can also involve filtering if the control is allowed to

depend on noisy or partial observations of the signal (see

Fleming and Rishel [14] and references cited therein.).

The modern literature of nonlinear filtering begins with the

contribution of Kalman and Bucy [24], who formulated and solved the

model (1.1) for the case in which x(t) is a Gaussian diffusion,

h(s,x) is a linear in x, w(t) is Brownian, and f(x(t))=x(t).

Their main result, to be stated in lemma 3.1, proves that the

conditional density of x(t) given Fy is Gaussian and provides at

method to compute the conditional mean and covariance recursively.

U -- i r.-- - d, "- ' .J i ' ii ...... ...... m . . i i I



ror few other cases is such a complete and easily constructed

solution available. However, two very powerful characterizations

of optimal filters are known to hold in quite general situations.

The first is a Bayes-type formula for %(f), which is due to

Kallianpur and Striebel [22] and which, in essence, represents

7t(f) by a functional integration in process path space (see

Section 1.3). It is valid for Brownian noise w(t) with minimal

restrictions on x(-), h, and f. When the signal is Markovian,

t(f) can be further characterized as the solution of a stochastic

differential equation (Fujisaki, Kallianpur and Kunita [15]). In

general, 7,.(f) cannot be found from this result because the co-

efficients of the filter equation involve optimal estimates of

o(x(t)) for functions 7 different from f. Thus additional

equations are required to compute 7t( ), which in turn require

estimates of yet other functions of x(t). The resulting system

of equations is in general infinite-dimensional. The cleanest

formulation of this infinite dimensionality is Zakai's [47]

stochastic partial differential equation for an unnormalized

version of the conditional density, assuming this density exists

(see Chapter 5). Finally, several very recent developments

promise new insights. V. Benes [1] has derived new examples of

explicitly solvable filtering problems, and Brockett and Clark

[17], Brockett [5], and Mlitter [35] have begun applying Lie

algebraic and operator techniques to the study of conditional

NEWi



density equations. These developments will be discussed in

Chapter 5.

The abovebriefly outlined results constitute the principal

highlights of nonlinear filtering theory, but, despite their

mathematical depth, they remain incompletely developed. For

many common filtering problems little is actually known about the

filter structure and one must resort to reasonable, but ad hoc

techniques. A powerful and general theory for building,

analyzing and comparing suboptimal designs does not exist.

1.2 Summary of Thesis

This thesis studies two different ideas for analyzing non-

linear filtering problems. The first is that of evaluating or

approximating filters by expansions in series of multiple

stochastic integrals. Such an approach is motivated by the fact

that the optimal estimate 7 t(f) may be thought of as a functional

(y(-)) of the observation nrocess. It is then possible to

explore -t(f) within the framework of a representation theory for

F, for instance, one that expands F in a series of simpler and

more easily manipulated basis functionals. Multiple integrals

are ideally suited for this, because they are easy to handle and

because they can represent a large class of functionals F

-- q "ANN
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(see theorem 2.2).

The second idea differs from the first in method and style.

Rather than expansion or approximation, it studies the question

of when a filtering problem can be solved in an exact, finite

dimensional manner. And rather than being probabilistic, the

techniques are algebraic and operator-theoretic. Brockett and

Clark [7], Brockett [5,6] and Mitter [35] have shown recently

that certain Lie algebras of operators, called estimation alge-

bras, can be associated to the problem of filtering a Markov

process observed in white noise. In examples with known, finite

dimensionally computable conditional densities, that is, the

examples of Kalman and Bucy [24] and of Benes [], the estimation

algebra is also finite dimensional. Conversely, it is widely

conjectured that given appropriate hypotheses, Lie algebra

finite dimensionality will imply the existence of a finite

dimensionally computable expression for the conditional density.

This suggests the strategy taken up in the second part of the

thesis research: seek all problems with finite dimensional

estimation algebras and try to solve them.

The main results of our investigation are presented in the

following chapter by chapter summary of the thesis. Chapter 2

defines the multiple stochastic inicegral and develops some of its

fundamental properties. The main result here is the multipli-

,,...... m I- .. . .. . . . . ..-
'
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cation formula, (theorem 2.4, Section 2.3), which describes how

to re-expand the product of two multiple integrals as a sum of

multiple integrals and which is an important calculational and con-

ceptual tool in the theory of Chapter 4. Technical lemmas needed

in Chapters 3 and 4 are also stated and proved.

Chapter 3 contains a proof of a result originally due to

S. Marcus [29] on the finite dimensional solvability of filters for

estimating polynomial functions of a Gauss-Markov signal process

given linear, but noisy observations. The proof here sets the

problem in the context of Gaussian process theory by using

multiple integrals and homogeneous chaos theory. It is simpler

than Marcus' original proof and explains more clearly how and why

a finite number of statistics characterize the optimal estimate.

This work was done jointly with S. Marcus and S. K. Mitter.

In Chapter 4 we present expansion theories for the general

filtering model of estimating a signal in white Gaussian noise.

First, we derive a representation of the full optimal filter as

a ratio of multiple integral expansions. In effect, this

representation evaluates the functional integrals of the Kallianpur-

Striebel formula with multiple integrals. Secondly, we pose a

basic problem, suggested by the multiple integral idea, for the

design of suboptimal filters: For any r, what is the best (mean

square) estimator having the form of an r th order multiple



12

integral expansion? Using the expansion representation in con-

junction with the multiplication formula, we derive integral

equations for the kernels of a best rth order estimate. We then

rederive the Kalman-Bucy filter and discuss the case r=2 as examples

of the technique.

Chapter 5 discusses the Lie algebra approach to finite

dimensional filter computation. The main results are presented in

Section 5.3. For vector diffusion signals with non-singular, constant

local covariance, a fairly restrictive necessary condition is given for

estimation algebra finite dimensionality. In the scalar case, this

allows all possible problems with finite dimensional estimation

algebras to be listed. A solution of some of these filtering problems

is then attempted using a method developed and discussed in Sections

5.1 and 5.2. The result is that only those previously known examples

of Benes can be solved finite-dimensionally by this method.

It is worth remarking that the last chapter is discursive in

style and does not present a complete theory. This chapter is

a preliminary report and discussion on calculations of interest to

a new, developing theory with important implications. To shorten

the exposition and concentrate on the main idea, we have omitted

certain cases from the analysis, but, as shall be mentioned, the
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results extend formally to them. In this regard, work remains

to be done in building more complete results. However, we feel

the ideas are sufficiently well-developed and interesting to merit

inclusion.

1.3 The Fundamental Problem: Mathematical Prerequisites

The work of this thesis employs techniques from a variety

of fields. Chapters 2-4 assume familiarity with certain elements

of stochastic process theory, in particular, stochastic inte-

gration with respect to Brownian motion, stochastic differential

equations, and Ito's rule. Chapter 3 uses some homogeneous

chaos theory, which is summarized briefly in Appendix 1. Finally,

Chapter 5 requires familiarity with the use of Lie algebra/

Lie group methods in systems theory and with the theory of self-

adjoint operators. Appendix 2 states the basic definitions and

results that are needed from operator theory.

We will adopt the following conventions throughout the

thesis: all Brownian motions are assumed to have mean zero and

unity scale; if 1z(t)jt>O} is a stochastic process,

FZ = afz(s)ls<t denotes the :-algebra generated by z(s) for

s<t.

Now
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We now state the precise filtering problem to be considered in

the thesis. Let {x(t) t e [0,T]) be a measurable real-valued process on a

probability space (.,F,P). Let h(s,x) be a Borel measurable function.

Set

y(t) - {O h(s,x(s))ds + w(t) t c [0,T] (1.2)

and assume

(I) w is a Brownian motion independent of the signal

process x( )

(ii) E 0 h2(sx(s))ds <

JO

Definition 1.1. A process {y(t)It e [O,T]} defined by 1.2 satisfy-

ing the stated assumptions is called an observation semimargingale.

Given a functional f(t;x(s),s<t) of the past of x(-), we want to

compute the optimal mean square estimate

t(f) Etf(t;x(s),s<) Fy:

The following theorem of Kallianpur and Striebel E22] will

be a principle theoretical tool of this thesis. For a good

exposition, see Wong '46].

Theorem 1.1 (Kallianpur, Striebel). Let
T r

dP 0  T ex T- 2r Id o =h(x(s))dw(s) - h"s].
dP e J 2

0O
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Then ( i) P 0  is a probability measure, P and P 0  are mutually

absolutely continuous, and
T T

dP .exp (h(x(s))dy(s) - h' f2 (x(s))ds]
a Jo JO 2f

(ii) E0( A 17Fxt'y = exp[ h(x(s))dy(s) -*{h2(x(s) )ds].

(Mi) W.r.t. P0, y(-) is a Brownian motion independent of x(-).

(iv) x(-) has the same law w.r.t. P 0 as w.r.t. P.

0 dP0 0t

Finally, the concept of innovations will occasionally be

needed.

Definition 1.2. The innovations process associated to the filtering

problem of (1 .2) is

V(t) = Y(t) - JO IT (h(s,x(s)) ds

Interestingly, given mild restrictions on the nature of x(-) and h(s,x),

v(t) is a Brownian motion (Lipster and Shiryayev [28]).
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CHAPTER 2 MULTIPLE !.ITEGRALS

This chapter will define multiple stochastic integrals

with deterministic kernels, discuss their basic properties, and

establish both theoretical and technical results that are important

in filtering applications. The main result of this chapter is the

multiplication formula of theorem 2.4 in section 3.

2.1 Definition and Basic Prooerties of Multiole Integrals

This section is devoted to a brief exposition of the

multiple Wiener integral and its elementary properties. Most of the

material is well known and is due to !to ( 20 ), who developed the

definition in its present form and demonstrated its connection to

homogeneous chaos theory. In addition, we prove some technical

results, including a construction to produce multiple integrals

recursively from stochastic differential equations, important in

subsequent work.

Let ;b(t)}t>0  be a Brownian motion, and let

Ft = afb(s)!s<t} denote its associated family of sub-:-algebras.

If (s,w) is a measurable random process adapted to r ,:i.e.,

z(t,') is 1,-measurable for every t), and -, E .ms-, ds <,
1JO

then for t < T we can define the measurable, adaoted :rocess

D(s)db(s ,t

.4"

C!
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see, for instance, Lptser and Shiryayev [28 ]. Recall the

properties of this integral

t

ECf O(s)db(s)] = 0

0 (2.1)

t t t

E ;(s)db(s) F '(s)db(s) = E (s)'w(s)ds

0 0 0

We will use this single integral to define multiple integrals by

iteration, a technique different than Ito's, but equivalent in

result up to a multiplicative constant.

Definition 2.1:

(i) ~ 2(CO,T]r) is secca'e or ~-~~(i) f E:L2( IO s
_ j j is s ? -.: . I  > s2  _ . _sr

if
N (if(Sl, 'S r : (Sl)...-.iW(Sr for

i=l r r

T > S1 > s 2 > .- >S r.

(ii) L2(CO,Tr) : f- L2 (O,T r)  f is

(a) separable on s, >.. > sr , and

(b' s-/mmetr4ic'.

i, -r) r f, is symmfetric.
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Definition 2.2 Let f : L2 (O,T]) , f = Y(S)...Y (s ) onS
.h

s> ... > sr . The r' mui ici stochast-i int_.;ar of f up

to time t is defined inductively by

t
Ir(f) : Yl(S ) jr-I d~) 22t s (y2 r d  (2.2)

0

and It(f) is defined on all of L([OT ]  by linear extension.

Also, we adopt the convention, I (f) =5.

Note that (2.2) is meaningful, because at each step,
r- 1

using separability and induction, yl(s) Is  Cy .... ) isa measurable,
s (2 .. r)i - me s r b ,

Ft-adapted process and hence may be integrated.

Theorem 2.1 For f, g Ls([O,T

E I (f) 0 (2.3)

r(f) Ir(g) L (f1g)6 t r! (f'g

t s r 
(2.4)

f . . f(sl," '.r.I s l,... r)d Sr .-.dSl

f j0 If r)(l sr0O0 0

r 2 ]r
Therefore, v. t  is an isometry between Ls([0,T ) and
rr .2[Or, ] ^*2 1-

ItLL(O,T]r) Since Ls([O,T]r) is dense in ]r(O,Tr) we can

extend the definition of : L1[0,7 ) by ccntinuity.
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Proof By (2.1), (2.3) and (2.4) certainly hold for r 1. Let f=

jl . . r , g N l(Sl)... i(S), and suppose (2.3) and (2.4)

hold For r - 1. Then

t

E It(f)= E O l (S) Ir- .s 2 * " r)ds :

t
*, (s) E r-l 0J y1( s1 (y2 ''rd5
0

t

t Sr-I

JO... I "l (Sl) .. .l (Sr) l'Sl) "".

ar(Sr)dSr. .dS .

The theorem follows by induction on r.

Remarks 1 By continuity, (2.3) and (2.4) hold for all f in
Z2( r,Tr).

2. It is not necessary to require that f be symmetric

since integration is carried out only over the set
sl- > s2 > > sr . However, the convention of s .e. i jse-'l

later on.
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3. For f 2 [0,T]r], let f(s.. ) denote the section

of f at s. We want to write

I (f) = tIr(.f(s, .))ds, (2.5)
it 0 s (  '

but, to do this, we need a measurable version of Ir (f(s...)). if
S

f is separable on sI  s2  sr this measurable version is
r

immediately guaranteed; indeed, this is how we defined t

is not separable, let ff be a sequence of separable functions- n
,

such that I n-fH 2 0. We then see that lim m.s I ( , -..

is a measurable version of Is (f(s,,.)) and hence (2.5) is
s

valid.

Let Gr = L2 ,FT"P) be the homogeneous chaos
r=0

decomposition of {b(s)js<T}, (see Appendix 1 for the definition of

this decomposition).

Theorem 2.2 (Ito)

Fo(vey r = (Irf If A 2 ]r)

For every r, T L ([0,T]r " Thus, if

e L2(,FP), there exist kernels kr E2([0,TJr) such that

k + r (kr ).

r- I r

Jr.,
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Proof The full proof may be found in !to (20), but let us sketzon

briefly why it is true. First, note that the spaces

Vr = r~(I ([0,T~r)) are closed. Moreover, by using step functions

we can see that Vr C. P and P r. V +. ,+Vr  (V = 2/, (seer r o ' a '

appendix 1 for the definitions of Pr and Pr). Since
fo r ,ta s

Gr= : r E) r-l' it suffices to show Vr . Vq for r 1 q, that is,

that integrals of different order are orthogonal. This fact, one

of the salient features of multiple Wiener integrals, is easily

verified. If I - 2 ([O,Tr), g _[2([O,Tjq), r > q, then, from

(2.5) and (2.1),

EIT(f) 151(g) : E !r fs ,.j gs . d
J S ° 5 " -

0

T Sq-lz-q
.. T Lf  -.I. . i ,s , . ,J " sq £S .. ..q

o a EI

dSq. ds1

Multiple stochastic integrals generalize easily to the

vector case. bT(t) = (bl(t),..b(t)) is a .-dimensional
w2, r

Brownian motion and if f z-L (Qjwe can define
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t Sr-I
r~f) -.- , .. , -b ;' '.... Ab;

0 r r

If (r,. (q,k ...kq), then the integralsr 1 q
r; ,. ., q;z ,...,z q(It f) and I t(g) are orthogonal.

In the case of separable kernels, a construc'icn observed

by Brackett ( 3) for realizing deterministic Voiterra series can be

adapted to produce multiple stochastic integrals from stochastic

differential equations. This result mot4vates the use of multiple

integrals because it says we can calculate, or at least approximate

them recursively. Moreover, the criterion of kernel separability

is used in Chapter 3 to prove finite dimensional c=mputability of

certain ootimai filters.

Theorem 2.3. Let f EL 2(7 0 ,T7 r). Then, for some n, :here exists

an ]Rn-valued process z(t) that satisfies

dz(t) =7 A,(t)z(t)db (t, Z OQ = z
z 0

for some n x n matrix functions A (t), z =,..., , and 'cr some
.:Tr;zl,*" "'Zr f cT  z( , -

n-vector function c(t), such that Cl = k ,

Proof It suffices to consider f : s./..-'r,sr. Sucoose

S < - < i, an :eine 0e x ' -( :

natrix - ,(t
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(t)(1( j ',j I k j
A" (t) N

L 0 ,otherwi se

That is:

0

i1-row 0 - t

A Z(t)
2.- o

0

Otherwise, de~ine A t) 0. Consider the systen z(t)ER

dz't A (t)z(t)dv (t), z (0) (0,...,0,1)
Z=1

We have

Z1

z,(t) = Y(~b s

i *(r s)'
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t Sr-l
zI (t) = !" j ss Cb s ). .c

J O - -rr ' r r '

r; 1 .. "1 r

Thus I f) (I,0,...,0) z(t

Finally, we will need a Fubini-type lemma on the inter-

change between ds and db integrations

Lemma 2.1 Let f -^ 2 (CO,T r). For t < T

t sr-2tI r-lfs-.ds:r•r ..
I s ' )d", . f(u'Ss' ""Sr l

0 0 0 sI

du db(srl)...db(s1 ) (2.6)

t

Proof Define gt(sl,...,sr) : f(u,sl,...,Sr1 )du. The r.h.s. ofr-r-l

(2.6) is It  (gt). To prove the lemma, simply verify that

t

E I (f(s,..-))ds - rl (gt)] 0

0

by using the basic properties of the multiple stochastic integral.

2.2 The Observation Semi-Martinaale Case

For purposes of filtering we must define multiple stochastic

integrals
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t Sr-1

I ... I f(sl I"sr)dy(sr)"'.dy(s1 ) (2.7)

0 0

with respect to observation semi-martingales

t ,

y(t) = f x(s)ds + w(t) (2.8)

0

(Recall, from definition 1.1 of observation semi-martingales, that

x(.) and w(-) are assumed independent, w is Brownian, and
T

E f x2 (s)ds < - for some T, 0 < T < ..) Such integrals are well

0
known and are developed extensively in martingale theory; Meyer [ 3 3]

is the best reference. However, the structure of the observation semi-

martingale case allows a simple construction, which we develop

here. Begin by noticing that, as stated in Theorem T.1, y(.) is

mutually absolutely continuous w.r.t. Brownian motion; if P

is the original measure under which the processes of (2.8) are

defined, there exists a P0 mutually absolutely continuous w.r.t.

P, such that y( ) is Brownian on (2,F,P ) for t < T. Therefore,

for f e L2([O,T] r ) we define (2.7) as the multiple Wiener integral

of the previous section by working on the measure space (o,F,Po) and

r
we call this integral It(f) without reference to measure.

Remark The process with respect to which multiple integrals are

taken will-always be clear from context and so will not be

indicated in the notation It(f).

*For simplicity of notation, we have set h(s,x)= _- in (2.8) (see section

1.3). The results to follow are valid for general h satisfying the

conditions specified in secticn 1.3.
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For Fy - adapted processes ;(s,w)
T T

such that P{ 1 2(s)ds < -} = 1, we can define the integral
Jo

t t t
f (s)dy(s) i-;(s)x

sds + f (s)dw(s) (2.9)
0 0 0

(see Liptser and Shiryayev [28]). As with the Brownian case, (2.7)

may be interpreted as an iteration of (2.9)

Lemma 2.2 Let f L2([0,T]r).

t

I (f) = fI s  (f(s,..-))dy(s) t < T.

Proof: This result is an easy consequence of the more general fact:
ft

the process - p(s)dy(s) defined in (2.9) is stochastically equiva-
JO t

lent to the process (J (s)dy(s))p formed by working on

(P.,F,P 0 ) where y is Brownian. The equivalence of these integrals

is obvious for stochastic step functions

n
i(S'l (ti ti+

and it follows for the general case by taking limits of such

step functions.

I (titi+l (s) indicator function of (titi+l

(t i .,t. , . ..1 .)
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The expressions (2.3) and (2.4) for the mean and covariance

of multiple integrals no longer holds in the semi-martingale case.

However, it is important in later calculations to evaluate these

moments, and, for this, the next lemma is useful.

T

Lemma 2.3 Suppose EC " x2 (s)ds]r < -. Then for k < r and

f e L2 ([O,T]k) 0

(i) E 2I_(f)] < M fH 2  M < - is independent of f
=t . k (L2 . .,k )

jk(-) k-l
(ii) E I (f) .O f

E x(sl) ..X(sk)dsk.- dsI

Proof. We will actually prove by induction the more general

result: for r > z > k :k'**- [O,T]

k'
E[x( ) .. (7l I k  (f 22 hz . -,,2. (2.10,

Z) - 'k(k'"")k z,kk

where hz,k ' L ([O,T] -k), and

ak Sl Sk-l

Erx(a ).x~ l C k (f)J . f(sl )s (2.11)0 0 0

CEX(Sl)"x(s (7 l''X(C ),ds

k k I '
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Lemma 2.3 is the case z = k for every k _< r. Firs: we

demonstrate (2.10) and (2.1i: for r > Z > k = 1, using :he

iterative for-mula of lemma 2.2 and the independence of x(.) and

w(.). Thus

E[x(al )--x(3 2) f f(s)dy(s)] 2 = E~x(a,).-x(a2)%( f(s)x(s)ds

0 0

al T
jf(s)dw(s)]2 < [x(a )..x(s)]2ds +

0 0

Ex(a) )x(a )2 ]KfH2 = ,-Z2

To derive the inequality in (2.12), the Cauchy-Schwarz inequality

is used several times. z LI(CO,T]Z '1 ) for z < r because

EI x 2(s)ds] r < -. Likewise

al r Cl
00EcX(a )-"x( _2 ) ds =0~ ~ ;)x1) 9sxsd

'2)JI0 0(2.13)

J f(s)dw(s)]J f's)E x(s)x( 2)..x(:,)"ds.

0 0

Now suppose (2.10) and (2.11) are true for a fixed k
t

and all z, r > Z > k. Again, using Ik+l(f) Ikf(s..))dy(s,

Cauchy-Schwarz, and induction,

• i
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ik+l (]2

[x(a z) X(a k+2) ak+l <

I k+ l s 1I) 
k (~

2 ) E[x(x ) (f(s2, .)) 2

0 0 2 21-

k

+ 2 {Ex(a .)..x(ak )I k(f ( s )I 2ds
z k2 s

0

T

[ £2 J hZk(S, k 2 ," , )ds + 2hzlk (ak 2 .. , )]!!fl2

0

2
ShZk+l(ak+2 ,-•,z)I fl2

By induction, h L1(o,T] -k- ). Thus (2.10) is true forBy inuctin, h,k+1

k + 1. That (2.10) holds for k also implies

T

E Ik(f(s ' .))ds <

0

Thus, because of (2.3),

t

E fk(f(s, ))dw(s) 0, for t < T.

0

With the aid of this equality we can prove that (2.11 also is true

for k 1.

-I r h"" J " n"1 -"" wrl -' l' : ' - 'k ' m,, Jl " C
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This completes the induction step. Induction s:Ops at k = r since

t2 rwe have required r > z > k in order to apply E, x < .

2.3 The Multiplication Formula

. 2  b p faBona
To any given functional L b of a Brownian

motion b(t), t < T, one can associate a sequence of kernels

"r~O k - 0(EO,T]r), such that
rrr=- r

= k + rI(k)
0 n1l t n

For applications, it is necessary to have rules for manipulating

this representation, rules that describe how the kernels k

behave under various transformations of the ;'s. This section

states, proves and discusses such a rule for the simplest case; i

f e L ([O,T]r), g _ L'([0,T]q), what are the kernels i : such

that

The answer will require some new definitions.

Definition 2.3

-i P n ,,7'r,- '

i proJecticn ol 2 ,. r onto(i r- , on o ,, ,-.



(P h)(:~*''-T

rr

(ii) For integers r,q,k, 0 < k < min(r,q), and

f F- t([Q,Tf)

0 0*

I q- k r-k,< "~-2 *d,

(iv) f(Dg =f 0 (t)90

Q~~is tbe basic operation by Anich new kernels are

created f cm 01, and, 4ndeed, we wi4l1 shcw i1n Ilema 2.1 -.nat

.'~~~~~~~ ~~ -2 - 2 1.mmIIIi~.i.....i
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stand G)(t), it is useful to think of the functions f and g

as tensors, which they in fact are under the isomorphism

L2([O,T]r) = L2([O,T]) G*).. )L2 ([O,T]) (r-fold). Then

fk 0 (t)gk may be viewed as a tensor contraction, and

fk 0)(t)gk  as a symetrized tensor contraction. The notation

fk() (t)gk  is meant to recall the summation notation, i.e.,

a sum (integral) is taken along the first k indices of f and g.

it is in this definition that we make use of the convention that the

integrands f and g are symmetric; otherwise 0 t) would have

a much more complicated definition. Finally, as an example of 0,

consider the case r > q k. By direct computation using the

symmuetry of f,

fq(D (t)gq(C 1 ,",ar-q)

t t
1 1 " f *(s ,Z ,,,\IS

-' I I * * " q r
0 0 r-q

x dsq Cs1

t t
=1 f~ ..sZI-a /o(s1P-, ds d

I q r-q' Sq dq-d
0 0

The main theorem of this section is:

Theorem 2.. 'et L 7. r . .,
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min (r, q)

,r,) rq-2k ((r+q-2k) t ),r,,7 1 g) 0 1\+-2 () (2.14,( tt t-k (-k k
k=O

(2.14) shall be referred to as the multiplication formula. Our

proof of (2.14) uses Ito's differentiation rule and induction, and

it is fairly complicated in its details. Therefore, before embarking

on the proof, we will set forth the relevant properties of (Z

in some preliminary lemmas. in what follows, f will always denote

a function in I2 (EO,T~r), g a function in L 2LOT]').

Lemma 2.4 For every t < T

fk 0 (') g k e L2([O'T]r+q-2k)

in fact

'If (2 <'f 2 , 21 k_ C)(t ,'q,k. g

where crqk is independent of f and g.

Proof It suffices to prove the lemma for G instead of 0

since Pr+q-2k is a bounded operator. Let do = do1 " dar+q2k

dS-= dlSl dsk. 4e then have, using the :auchy=Schwarz

inequality

[ ,' d,- k
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x r !,r ds-f(Sl '  .Ska I  .)g(s S , ,-2.
. s~s . .'k T . "" " r+q-2k.

CO,T]k

< ifdo ds 2 ..,sIk) k "S'I '"7r-k

[0 ,T]r+~
q 2k [O,T]k

[ ds g2(sI, --,Sk, rk+l '-.,r+q-2k)

QTk

CO , 7f 1 iI , 12 , , 12
22

(k!)

Lemma 2.4 establishes that the kernels in the expansion

2.14 are square-integrable and hence that the multiple integrals

are well-defined. The next lemma collects useful identifies and

facts about 0C) Recall that tne notation f(sl, ..,s k ..)  in-

dicates the section of f in which the first k variables are

fixed at sl,..,sk' respectively.

Lemma 2.5

, -k ' k _ ' r - ,_k-7 ... .

1 ' l -

- . '© "'"
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(iii Fr k> 1,(1 k(9k r+, -2< k

= r-k + sk.. (tg(>,
r+q-2k ( k(O(t g r-q-2k 'k" ( k

(a2"" r+q-2k )  (2.16)

(iv) . = r(iv)fQ ()g~a' 'r+q ) :"r-q '-

- CO (z)g(Th..)] \v- •r 'k~ $2.l-

r+q(l 2''r k

Proof

(i) follows by caiculations similar to the proof of

lemma 2.4, namely, one writes out the definition

of the square norm and abplies Cauchy-Schwar-. Te

details will not presented.

(ii) By direct calculation and definition, using the

symmetry of f and g extensively.

fk ( )gk t

0 0
-It s 1 . 5 -

.. . . l . . . Isk
: r= Z rI" Ak> . ,.'':,**s . ***s
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?r q - k . * . , , . . . , , . d , .. d.; . f(s . ,sk , ,' ,s1 • s ,.

r+q-2k["-! ;k

0 - 0 " f s ' " k g s " ' " d s  " s l

.11 C 0 -

t

Sds f(s,), (s)a(s..)= fk ( )g k +  -1 csfs- )~ ( s -I

(iii) and (1iP6. The proofs of (iii1 and i )are similar, (4'

being just a special case of (iii). 'e shall only present i

as it is simpler. Note first that, by cen"cicn,

r

rr

f+q( r "' )  r;(t)Q]

where 7 - 5rq~ is interpreted as a permutaztion c- , .- r

Now using the symmnetry of f, (2.18) may be written as:

it position

rrq-q =i ,_ r a l : ) 'j 2 ' , ( - } = ').,

r+3 - "r ]'' ' t /. .
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Using the expression analogous to (2.19) for f 't~c' • '

r+q (D 't) ""2' "'r q

r th position

1 rY~~TJ ~ ~ f(C (2), . (r))

g( r+:l)' , r+q)

q

j=l r (21

~r+q-1

.th
j position

g( (r+2)," 3al,"'-3-(r+q))

- f 0

--7Tl -T ( 1'"g (,I-(r~l)'"7-,(r+q)
ar+ q

:f 0 (t)g( l,..cr+q )

This is the desired result.

Proof of theorem 2.4. We use Ito's differentiation formTula and the

preceding lemmas to implement an induction argumenz that proceeds

in two steps:

(a) Show (by induction) that (2.14) hols for orders n,

(a) ~ ~ ~ A Tha Amnucin,
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(b) Assuming (1.4) for (r-i,q), (r,q-l) and (r-l,q-l,, show :hat

it holds for (r,q).

(a) and (b) then provide a consistent scheme of induction as shown

by the following diagram demonstrating the paths of implication.

3 = 0>

S= fr " oj etc.
2 =P o oc

1 0 o 0

2 3
r=

Step (a) For r 1 1, q 1 I. By Ito's differentiation rule

t t t S1.

Sf(s)db(s) g(s)db(s) = (f(sl)g(s 2 ) f(s 2 )g(Sl)db(sdb(s,)JO 0 O0 " - '~2+fY0s

t

+ Jf(s)g(s)ds

Suppose that the theorem is true for (r,q) = (n-I,I) and let

L -([Oj, g '.'([O,T). Applying to's differentia"n

rule again,

4.-- -
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t t

0 0

+ f In-l(g(S)f(s,. .))ds (2.20)

0

BY induction,

I n-l(f(s,. .))I, (g) =In (fl-0(s, )( g~]) + I n-2Q(sg.
* s

Lemma 2.5(i) and lemma 2.1 justify interchanging integrations

in the last term of (2.20):

t

7hus, by substitution in (2.20)

t

n~(.,I() ~~() + Infs,)0 jdbs

t
+ I n-2~ s 0 ) ,d '
0

t
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+ - ~{ 1  )a 2 . ) +

+ 1"-f( .)l G(al)gl(oat*' n)

t

+ f ~~~,,*a 1 d}
0

And by lemma 2.5 (iii) and (i,/) this becomes

nI ((n+l)f(Dg) +I -f

,6 (t)g1 )

which completes the induction step of (a).

Step b Without loss of generality assume that q < r. The induction

hypothesis is that theorem 2.4 is true for (r'-l,q), (r,q-l), and

(r-l,q-l). Apply Ito's differentilation rule:

I~()~g t t Ts(!)1 ls f(5  )db(s)
0

t

+ j0 s1 9) f)db(s)

t

+ f ~,-))ds.(2 k

0

By induction

I -. 2k7- k
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rq-1mi n(r, k)
I5 f1 5  s k= Is r-k k (s)gk(sc .)k

(2.23)

m i n ( q -l r - )+ l q 2 r - 2 k k l ( ~ ( ' -k
k=1 S r-k)(s k (sgs -l

(2.24)

Now substitute (2.22) -(2.24) into (2.21), interchange dt. and db(t)

integrations where necessary, and collect like order terms. The

result, after some nasty calcilation, is, if q < r

I r(f) I,(g)

r+, r~)f( 1~ Og] + (r+q- 1)l

q- rq-2k((r+q-l-2k) c~
r-l- k 1 I'**kI~s'**r+q-2k)

t
(r+q-2.k I

rk sl F(U k.)lO(u)g(uc K) kldu (2.26)
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t

Now examine the kernels of the last expression one-by-one. The first

kernel equals

(r+q Cs- (ff0sgs 1 '

+r+q (( s, .(s,.' r+q)

-(r+q)(f 0  g),5  . .( . 7

The last equality comes from lemma 2.5(fiv). Likewdise apply

lemma 2.5(iii) and (iv) to the kernel of r-ia-2k I < k _

The kernel of I.~-2 equals

Er~q.2k ) C '-k

r- r+-2:k (fsE kC sl9k)( 2' 

t

+ ( f(u..) G ) ( aur , du-

Jsl
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: (r+q-2k'[(f (t)9kJ(l ] (2.28)r- 0 ,..k( l' - ,r q2k) 3

Finally, in the same way, the kernel for Ir-q is
t

(fq 0 (t)gq)(Sl,",Sr-q )  (2.29)

By combining (2.27) - (2.29) in (2.25) we complete the induction

step (for q < r):

r rn(g) =in(r,q) r+q-2k(,r+q-2k)f

k=O

The proof for q = r is the same; we need only check that the lowest

order contribution in (2.25) corresponding to k = q is

t Sl S q-1

f ! .. I" f(sl ... S g sl  . ., q d . .dsi .
q~ ~ 0 (t0 oJ o

The multiplication formula relates directly to properties

of Hermite polynomials,' as one na:trally sus:ec:s from the cznnec:icn

between homogeneous chaos and multiple Wiener integrals. in fact,

letting {h n(X)"n= denote the Her-nite polynomials defined In

Aopendix 1 and taking c n _l to be a complete orthc noa :a's

of L2 (r~~recrall f-:m th e or i 2 arc :e o r;-- 7 .

.k _V
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.: r(,) °(LQ,T] G'rT )i I2 ,~j~

T

- pan i=l pi 0 Ji(a)db(a))ipl+'+pn=r, j, are

pairwise unequal :. (2.30)

Now, the hn (x) satisfy the identities

min(r,q)
hr(x)h (X) 7 V(r)(k) V(r+q-2k) h (x) (2.31)r q k kk r-k r-q-2k

for r,q >_ 0 [see e.g., Magnus and Oberhettinger [26]). Comparing

(2.31) to (2.14), one thus sees via (2.30) that the2 multiplication

formula effectively generalizes the identities (2.31). There is a

discrepancy between (2.31) and (2.14) in the factors multiplying the

expansion terms, but this is due to the different normalizations in-

volved in the definitions of nn'  r andO

It is natural to ask whether theorem 2.a can te proved

using (2.31). However, this strategy appears exceedingly difficult

to implement and I have not succeeded in doing so. Recently Hida [18]

obtained a proof of the .nultiplication formula independently of

myself. His proof effectively generalizes :he techniques used to

prove (2.31 , but to 4o so Ie must invoke ns advance tneory oF

gener3lized 3rownian -unc-:ionals. ,ur :rccf, tncn 4n,,ive,
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ccmputaticnally, proceeds via elementary methods.

The multiplication formula can also be ised zo ;eneralize

a fact about Gaussian random variables. Suppose Z is a normally

distributed r.v. with mean 0 and variance 2 Then the well known

identity

E Z~m =(mI... 2

expresses the higher order mcments of Z in terns of the variance.

Clearly it implies that if X is a sequence of mean 0 normal

r. v.'s, EX2 as n if f EX 2m - 0 as n -~for anyn n

integer m > 1, or, in other words, that mean square and 2mth

order convergence are equivalent for any given m. Now 1(f) is

an element in the mean-square closure of rth order polynomials of

a Gaussian process, and hence itsmoment convergence properties are

similar.

Theorem 1.5 For any r and k, there exists an M < k such' r,k

that
E ~r(f))2k < M 2k (.2
E ( T  } r,k,,i , ( .32

for all f Z 2([O,T]r).

Proof 2ss:ume that, fcr a :iven n,
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nr Z

T z=O

where

z[k . MilfIl2n ,  z < nr (2.34)

Using the multiplication formula there exist kernels h such

that

(m(f))n+l = (n+l)r Z

and, from lemma 2.4, there will exist an N such that

1 nr kji 2 [ 1 2 < ,I,,2(n+l)

j=O,

for every z. Thus (2.33) and (2.24) will hold for n + 1 also, and,

since zhe case, n = 1 is true, they will hold for all n by

induction. But then

2n = nr 2 nr

E[IT(f) 2  Z E[I.(k )] 1'
z:O z:O

SM" f 2n

Of course M" will depend on n and r.

Corollary Let ;fn}_ and f be functions ln L 2 '',

Then f -f - 0 as n -



47

En[r, n)_ir(f)]2k _0 aET(- 0 as n --

for any or all k > 1.

Remark Theorem 2.5 is not new. I. Segal 143] has derived (2.2,)

in the context of Gauss measures on Hilbert spaces. :n fact, he

obtains a universal constant c such that

r )2k 2kc fl2k
E(I (f)) < 22krc ',f for all k.

Tneorem 2.5 is also related to :e ' eIson 33 ",eory o: n_,er-

contractivity; see Mitoer and Qcone 36 Nevej 9 4s a gooc

reference for one version of eIson's rDoercontrac:tvltj .necre-.

McKean [32] and Wiener [45] also develop identities for

expressions similar to E[(T(f))2k] in theorem .5. In these

treatments, the interesting corollary above is not g enerally observed.

The next result is a variant of an easy and well-knc;wn

identity first appearing in Ito [23], and stated here in (2.39'.

proof employs the multiplication formula.

2 bTheorem 2.6 Let £ L (:,F, have the multiple integral expansion

r 0.

L T kr
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Then

r r i.

Proof For given 0 > .. 'let

i S) C~,i ( ;, 0 _ i < r

i' i

be the indicator function of [0,:i]. e wi2 'irst show that

r.
ir  _" + -2n(,

b(zl )  .. b(:r )=: T(y] T "r.. ,

~r,

-- max n n < -

and each kernel h" .... r has the orm" r

N.
rn - i~
i C

:77 r i I :

in whici tne Cun.ctions each depend only on a proper subset
7ir

o6 :"e indices , -. Tis fac: ci l : . i/ si0oli'v the :ask

3 " : > ; . , ,a : -n : r E _- 'b '. , * . . : a s , . . . s e e ra,". -S r"

ea cc.

ss ::7" r
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Then

b(:)...b(,r) )(I.. r)

Cr/2]
+ E I T( Y°) r-2n ( hn)

+ T Tn=O "

Now expand all the products in this sum by the multiplication formula.

It is easily seen that the kernels of any multiple integrals that arise

from expanding the terms

Il(yo) rr- 2n(hn"T CI "" " r

will be of the form (2.36). However, the first product is

110) Tr( 1 r ,

?r+l 0 r). rJl""T ( (r+l)1-° (7)-( .. .' T 10y ( 7,

The first kernel is

I r r rJ SsT~1~ . 0 (sj) (s)" (sj - I  (Sj)....(r(s )l

for s > S..> 5
r

0 0
utnote -h1at if j > 0, ,O'sjs.,-' fc >ls~c

7,0 >  > 3 implies : 
> si. "hus t.he last excressicri mai :e

written :ore simoly as



0s

r Ij=l
(2.27)

and only the first ter, depends on all the indices

Likewise, the second kernel is seen to be

1 2 r" (s )y (S ... r (2 238)
So

The only kernel in (2.37, and (2.38) that depends on every index is

rl 0 tr

Thus by substituting the results of these kernel computations into

the expansion of b(j0 )-.b(7r), we find that (2.35) is true for

r + I as well. Thus (2.35) holds for all r by induction.

As a result o (2.335)

,rj '- b ( 70 . . .b ( : r)
al ... ")cr

.r Er/2] - -2n n

"' n= =0 "

.4.
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r j r 00 l rr

_ __._ - ....r

t 1l Sr-l

1 .. ?r i" r(Sl'~ ~ " r)[ ¢i

[,7 r](S r )  r'ds. (2.29

= k (C,...,- r)rl r

This completes the proof.

Finally, we note that theorem 2.4 extends easily to the

case of multiple integrals with respect to observation semi-

martingales. Under added assumptions, theorem 2.5 and its corollary

r
extends also. Tndeed, let T (f) now denote integrals with respect

to y and let 2 be the measure w.r.t. which y(') is Srownian.
C

Theorem 2.7 d 2 < -, theorem 2.5 and its corollary hol

for IT,y0

Proof Use the Cauchy-SchwarZ inequality to terive

,r _2k rdP c 1/2 F dPj2 71/2 Tr 4k7[I,y~f C: d IO T ,~ y 0
,0  - u dPO "  -7, )

< E 1/2 (d ,2 ! : 1 ,
0 1-JPo' Mr,k
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Rema rk

p2 Tx2E0 (1--) = EP exp x(s) ds. See, e.g., Wong 41dP 0



- 53 -

CHAPTER 3 ESTIMATION OF NONLINEAR FUNCTONS OF GAUSSIAN

PROCESSES

In this chapter, we begin the applicaticn of multiple

integral expansions by treating a filtering problem considered by

S. Marcus in his thesis E29 ], (see also Marcus and Willsky E31 ]).

Marcus succeeding in constructing a class of filtering models which

are interesting for systems applications and for which optimal

filters can be finite in dimensionally and recursively computed,

(indeed, a rare and happy event!). Roughly speaking, these models

pass the outputs x(t) of linear stochastic systems through poly-

nomial nonlinearities and seek to estimate the result based on

linear observations of x(t) in white noise.

Marcus's original proofs accordingly rely upon linear

filtering theory and Gaussian moment identities, and so his

techniques never really leave the realm of Gaussian process theory.

One naturally suspects that the proper framework for his problem

is homogeneous chaos theory, the theory of polynomials of Gaussian

processes. In what follows, we will show this suspicion to be

well founded by developing a direct proof of Marcus's results with

multiple Wiener integral techniques. We feel -his orcof explains

in the clearest manner why finite dimensional fil:ers occur in

this Problem anc hcw the fiter statis;cs arise. ,-he res'2-s t;

to, te JIscusSc -ere ha/e aooeare 'aos,-i:tr cne :
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where an extension by Marcus to the discrete time case is also

presented. It should be noted, as an aside, that solving the dis-

crete time case requires using polynomials of the innovations,

(see Marcus, et. al . [30 ]) . This feature, which does not occur for

continuous time, is explained by homogeneous chaos theory. We will

not comment on the discrete case any further. Finally, Hida and

Kallianpur [19] solve the related Problem of predicting polynomials

of a Gaussian process using noiseless observations, and they also

use multiple integral techniques. By contrast, the results here

deal with the case of noisy observations.

A brief exposition of the homogeneous chaos theory relevant

to this chapter is presented in Appendix 1.

The problem may be stated as follows. Consider the linear

system :

dx(t) = F(t)x(t)dt + G(t)dw(t) x(O)=x0  (3.1a

dy(t) = H(t)x(t)dt + dri(t) y(O)=O (2.1b'

In (3.1): x(t) IR; F, G, and H are piecewise con-

tinuous, bounded matrix valued functions; w(:) and ) re inda-

pendent, vector Brownian motions; and xr is a Gaussian random vari-

able independent of both w( .) and () . .e consi er x(, t e the

signal process y( .ne ooser/aion process, rd qe are : -ers -:.

in calculat ng the filter X S) s< t r unct nals
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f twhich are finite Vol terra series with separable kernels in trne

elements of x(t), Wsee definition 3.1).

In 2.1, we gave a construction for realizing a multiple

stochastic integral with a separabie kernel as the output of a

stochastic differential system. By the same construction, we can

produce ft i.e., there exist matrices A (t) , z=l,*.,r and a vector

c(t) such that

ft=C T()z(t) (3.2)

where

dz E

Figure 1 illustrates the situation:

I AT-

Fig. I



The following definitions are convenient:

Definition 3.1

.p --- Yo()'"

i=l 0" O P('P

ipix k ~ 2 )×
xki'l (a)'ki p )c.dL

(where 4%0  {yo(t)I y - L2c( 1R)]

Definition 3.2 The filter ft=E-ft(x(s), I y ; is finite-

dimensionally computable (FDC), if it can be computed from tne

output of a finite dimensional stochastic differential equation

driven by y(t).

Marcus [29 ] proved:

Theorem 3.1 For any p, if f t .% p ft is finite-dimensiona,

computable.

Remark The theorem remains true if dy((

R(t)dw(t ,' ihe, R(t)>C and is determinm it-' ... e :r: f is a 'r v-la"

0 -
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adaption of the one to follow.

To carry out the proof, we need some properties of the state

estimator ;(t) = E~x(t)IFY-].

Lerrmia 3.1 (Kalman-Bucy)

i)

d;(t) =F(t)x(t)dt + P(t)HT(t)dv(t) , X^(O) x

where

t

VMt y(t) - JOH(s);(s)ds

and P(t) Er(x(t)-x(t)) (x(t)-x(t)) Ij satisfies

A(t) = F(t)P(t) + P(t)F'(t) + G(t) -P(t)H T(t)H(t)P(t)

P(Q) = cov(x0 )

ii) Wt is a Brownian motion and Ftj = Fyt(up to sets of measure

zero) for all t.

Proof See, for instance, M.H.A. Davis F9,10 2.The process

-,(t) defined in lemma 3.1 is called the process, and

1W W-
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it is the key to our proof, because it is a Brownian motion that

captures the information in y(.). That is, if f is a random

variable such that Ef 2<-, then, by lemma 3.1 ii)

E{fIFy} = EfflFt; and, hence, by the homogeneous chaos expansion,

we can write

n t
E{fjFY} = k(t) + k(ta)dv,(j)

n rt r 01
k+ Ji'J(t'l "32)d" (a2)d,,,(, I )

iJ~l J0 0 k2 2°I i211

+ • (3.4)

By using the innovations process, we thus achieve an orthogonal de-

composition of any filter. But if f E .%p, we can go much further.

Lemma 3.2 If ft P . the expansion (3.41 truncates at orde p:

n t

f k (t) + l k' (t, ) d i(,7) +i 0o
00

rt  roP-

+ 1 .. j k P p(t jl ,..  )Zl' **p=l 0o 0 PP

d" z p( )"dv 1 ) (3.5)

lim
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Proof: From the definitions of x(t) and p E2 and thus (2.!)

is valid. Now consider the process z (t) = (x (t)x (t) ,(t)).

By (3.1) and l emma I i)

F(t) 0 0

dz(t) .H(t) F(t)-P(t)HT(t)H(t) 0 z(t)dt

H(t) -H(t) 0 I

G(t) 0 dw(t)

+ 0 P(t)HT(t) dr(t)

La L

Soi: (xT, J'

Thus z(t) is generated from a linear system with Gaussian inou: and

Gaussian initial value and hence is Gaussian. We conclude that

(x (t), v T(t)) is Gaussian also, and hence that we may apply tne

homogeneous chaos construction to it. In Appendix 1, this

construction is developed for scalar processes, but it easy to see

that the entire theory remains valid if we rec ace of A:endi

by

oan- -- -

Moo- C P



- 60 -

Letting A : : xi(s), -(s)l 1 < i < m, < j < n, s < , we can

build from H the homogeneous chaos decomposition

2LZ(.', A, P)=( G

Z:0

However, we can also perform the homogeneous chaos decomposition on

the process x (-), that is, if -G ') denotes the zt  homogeneous

chaos of v(s), s <

2L(C, Ft , P .7v7t'Z=

P
Evidently, G 7v) C G for each z and ft i U G since ft

is a polynomial in x(.) of order p. Since Gk-7)J) c Gk
P

and Gk - G Gz for k > p,
).=0

ft " G ) z > p.

But

E{ftIF"} : projection of ft onto -- 7

Thus f jF: (D as desired.
' Z:O e

4e shali alzo ,neet
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Lemma 3.3 Let z = Cz ,' ",Zk] be a jointly Gaussian random vector-

k

(i) E[z-"' zk] Ez, Ez2...zk + ) coy Fzlzj] E[ z z]
7 -k j-2 ji Z~j .

(ii) E[zl.. Zk] EzI' Ezk + cov(z jlzj2 )Ezj3 ... Ezjk

+ Z cov(z jlz2 )cov(z j3,zj4 )Ezj..'EZ .k

where the sums are taken over all combinations of pairs in ;i

Proof These types of results are well-known; a good reference is

K.S. Miller [34], The particular form used here is that given in

Marcus and Willsky [31].

Recall again that when a multiple Wiener inzegral has

a separable kernel it is finite-dimensionally computable. T7herefore.

by lemma 2, f will be FCC if the kernels k r
tr ' ' l' 'r *

r < p, of (3.5) are separable. Proving separabilizy is thus the

strategy of the proof of theorem I. We shall need one more le-rna

that is a standard fact about linear stochastic d"-ferentia '

equaticns.
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lema 3. let :V, we :ne An -ale sol:on :- a Ptear system

Nitn 3rownian inputs.

dZ(t) = Ait)Zt) dt + B,,dW(t

Here 4(t) is a vector Brownian motion and A(t) and B(t) are

piecewise continuous matrices of appropriate dimension. Then

= lt<s ? X1 (t,s) + lt>s9 X2 (t,s)

where 1 ts denotes the indicator function of 't<s- and

XI1 t,s) and X.1t,s) are matrices of separable functions.

Proof Let Y(t,s) denote the state transition matrix of A(:), that

is L D(t,s) = A(t) (t,s), '(s,s) = 1. Let

K(s) = Cov[Z(s)]

t

One easily calculates from Z(t) =(;,s)Z(s) Js

that

t .0) sO-K's, s<

kK s [ S,. t.. S>,
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Oroof cf Theorem i ' We can assume Hha: f nas the or-i

t :p-1

0 0 0p 
0 *'

Then Ft has a finite expansion as in (3.5). The proof will consist

of showing that the kernels kr 1 tra1,. r - r<p, of the

expansion (3.5) are separable. The idea is to use theorem 2.6 to

rkr1  """r t ) l>rEf 2 .  1r

express k r in terms of st and vin

I """ r(t ,,l r ) - "f 'Z

kr I  ? r 1 r r(= J

Lr f. , . %'" ' ) "
rr

or -The second equality in (3.7) is de-

rived from the fact that )is = -measurable for cr < t

',4hen the expression '3,6) 'or + is used in (_.7), the resu]- 4:

r r"' (t) l .

3o po ;C°(  ) "  " r (s ,.x :].
... ; t i..0 r s " ,

v~he idea ,i: ,,,is :rooi: is due to S. Marcus. 1' aooears in Ya. c-js
,' ,itter, In cae-0 u ,,,t scme errors. The errors are

correct ere.

~i
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Since ,t),'(t)) is a Gaussian orccess, lemma 3,3ii) may be

apolied to the expec:aticn term in the integrand of (3,3). The

result is that this term may be viritten as a sum o-" Products of he

following terms

kk i ), k j

E ( ,ovx (sv)xki7S
. -o.xk ( i 'Z.I

,2

and
ci  E '. :.ji

Because -(.) is a Brownian motion, the last two terms are

identically zero. The first t'.,io terms are separ-aIbe nct-ns of

(sI ....,Sp) on the rang e of in.tegration s > - > , -o see

this for cov[xk. (si),X< (s5i use le.ma 3.- and the Fact that
1. i

s4> s. if i < j on the rance s5, > s2 > . sp Te.

maimina term is

-.--- tovE' is) (-) = - .r"
'<~s" a5 cOvLXk (s' ,, [Ks) (x(s'-xs z~ov [ x" 7; c0 xI

(Note: :n (3.9) some of the subscripts have been drocped cr

simnlicit,/ of notation.' Since the observaticn ncise

indeoendent of t e si:ha :x>,. cS'LF S -

= ' S , - - - < - '" "

,3.9, c 'I T

7 l l iI II II II -
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system with 3rownian inputs. This system may -e ex ici-1 ccn-

structed using the Kalman-Bucy result in lemma 3.1, Thus, using

lenTa 3,4,

coV[Xr(s),H(Oi(x(o)-X(Z))]z] : 1.s < )l(s, + s > '2s

1is < -

+ ,(sz) (2.11

where -,I and -2 are separable func:ions,

The end result of all these remarks is that (3.3) may be

written as a sum of expressions of the form
s01

Y (t). (s " p)
J , J 0 0"p( C S 1  ( s ' 1) ... '7r'

ls < .s
"~S i ~q .P

such that a < r

i'... p c ...

and

To complete the proof it is only necessary :o show that (3.,2 is

separable as a function of (t,cl, .1 . , However, by aporooriately

adjusting limits of integration in (3.12 we can write (3.l2) in turn

as a sum of cerms of the sort

" ' .. ... -0, : - ' - . i *
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Since vxt),'Q:) is a Gaussian process, Iemma 3,3ii) may b'e

apolied to the expec-ation term in zhe integrand of (3,3). The

result is that this term may be written as a sum o- products of the

following terms

Exk (si) , cov[xk 's),xk (s.),
1.i I- ." 2
1 1

a ov[xki,, .~

,2

and
> - E'v, (:.)'

1 1

Because v(.) is a Brownian motion, the last two terms are

identically zero. The first two terms are separabie functicns of

(s .. ,s on the ranse of integration s> > .. > , :o see

this for cov[x .),x, (s.)] use lemma 3.4 and the fact that

s4 > s. if i < j on the rance s. > s > s The re---2 - 2- ' - p

mainina term is
-cov~xk(s), :)] covX, (s), [H(s)(x(s)-x s )72 4s

+ nkCj)] (3.)

(iNote: :n (3.9) some of the subscripts have been drooped for

simolicitv of notation.) Since the observation noise . s

indeoendent of the signal x(, , cvFxr S), - -us,

(3 o = s n e s vx , c, r - a-,, -

zut .Z Xit 
= :< . ; x ,,- tr' ' i e 3te cir 0-" 3 ":nes r s-oc' a-. :
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such that, for each a , ai-", ' " r&s i-l ' ""

a >a2 >_ , , >ap, si a> l1 < o Note that '3,13) contains no

indicator functions I , < - Using the identity

b I b ra
ag(s)ds Jog(sids - g(s)ds

to write single integrals as separable functions of their upper and

lower limits, it is seen that (3,13) will be a separable function of

(t,1...7r )  . Thus (3.12) and (3.3) will also be separable, since

they are ultimately sums of terms like (3.13). It is worthwhile

illustrating the ,ast argument with an example.

Consider

' (s1 )a2(s 2 ):l (: )32 (:2) 1 sds,.ds
0O 0 1 " 2 2

By straightforward calculation, this equals

72 Sl 

jy J l Sl)a 2 ks2)ds2 ds1  
+  

,S l(SlI (2 5 2, sW

0 0 12 0

g2 Sl

2

, ) (S. (2)ds2 d S

.,rech is --. a=-ao.

. . , . . .: .. r ~ ~~~~~~~~~,, " .. ./ . . . ,.' ... ,-__-. .
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CHAPTER 4MULT IPLE STOCHASTIC INJTEGRALS ANO NLNIEAIR F:L77 R:NT

This chapter applies the viewpoint of multiple integral

expansions to the general filtering problem stated in -the Introduction.

First, the Kallianpur-Striebeli formula is used in 4.1 to derive

a representation for the optimal filter as a ratio of two multiple

integral series. The integrals in this representation are formed

with respect to the observation process and have kernels thatL depend

only upon the unconditioned distribution of the signal process and

that hence may be computed offline, prior to receiving any

observations. Secondly, we discuss the class of suboptimal filters

consisting of a multiple integral expansion truncated after a finite

number of terms. By combining the exact fil1ter exPansions, "he

multiplication formula, and change of measure, we terive kernel

equations for the kernels of the best r th or-b-er ilc1er of this class.

'Ae then treat the cases r = 1 and r = 2 as examples and, usi:ng

the same techniques, rederive the Kalm-an f-Ilter.

The filter expansion presented 'In 4.1 resembles formnulae

obtained by Eterno [i1] in his thesis. Eterno built filter

aproxiniations by expanding the unnormalized conditional --ersity in

roment or cumulant power series, and his expressions, w.-hen r-

:rialelj evaluated, have mul'.i1le 41nte-r3el eaics

Our exprsi-n 4hcn can 31s3 be azoliec -o 7-,e cord4t.:na. ,%.

stuce alon; 14"erent hines and -de c:Z' a n'
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class of suboptimal filter designs.

It is worthwhile empnasizing that the stochastic integrals

employed in this section are taken with respect to the observation

process, and not, as in Chapter 3, with respect to the innovations

process. At first, integration against innovations appears to be

an attractive alternative, because the innovations are Brownian and

so allow one to exploit the homogeneous chaos theory, theorem 2.6

for computing kernels, and etc. in approximating filters. However,

in constrast with Marcus' problem, the innovations are not easily

calculated for they require optimally estimating the signal h(xt)

(see the introduction), a problem of equivalent difficulv to the

original one of estimating an arbitrary functional fx s 'Sit).

Integrals against the observation process, on the other hand, are more

readily computable, but less easy to handle, since y(.) is not in

general Brownian, much less even Gaussian. y(.)-based integrals V

different orders are, for example, not orthogonal, making it difficult

to project random variables on finite order sums of integrals. The

technique introduced below to derive kernel equations for best fnie

order estimates addresses precisely this complication and provides

tools for exploring the probabilistic structure of multiple integrals

of y(t) in more detail. Thus integrals of yi' ' can be analy:ed

and are more satisfactory for aoplicat*ons than integrals of the

innovations process.
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4.1 Filter Expansions

To fix notation, let us restate the general ii.terinc

problem and the Kallianpur-Striebel formula for the optimal estimate.

{y(t) O < t < TI, (x(t)O < t < T} and {w(t)!O < t < T} are scalar

valued processes on the probability space ( ,F,P), and h(s,x) is a

real-valued (3orel) function such that

t

y(t) h(s,x(s))ds + w(t) < T,

T (4.1)

E (j h2 (s,x(s))ds} <

0

and w(.) is standard Brownian, independent of x(.).

Let G = x v Fy and define PO byt t t0

dP ex[T 7 h2(sx(s)dsdPd- =exp[-l' h(s,x(s))dw(s) 2 s× sd :

0 0

Recall that P0  is a probability measure w.r.t. wnich y(.', and x,:"

are independent, x(.) has the same law as under P, and

(y(t),Gt) < is a Wiener process. By this last statement, ie mean

that 4.r.t P ,(t; is a continuous G,.-martincale 3ucn tna:

::r,,(..y - SI2 = - s: in general, :1 . -

be a 'inite /ariance ncn-an-.ii:a.:ie -,rc:':cnal o- . -o,

s ,nol icit , ,e sna n the secuel 3 a /s :eno:a -. /

- . _ ., •. ,-;-..S.-,,, ..,,L.,, ,-., .T,=t 'k._'_Z ', .. ... ,._ 
r
...... ..I I"'i .....
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and likewise h(s,x(s)) by h(s). Then the Kallianpur-Strietel fc a

states

trt t.

Eo{f(t)expf h(s)dy(s)- 2 h

0 0 (4.2)
t t

Eo(exp[r h(s)dy(s)- f h2 (s)ds"}
0 0

Because of its importance, we single out the exponential term in \.L

with the notation
t t

expj[ h(s)dy(s) - I h2(s~ds -

Jo 2
, dP

It is well known, (Worg [15]), that - dP L is a -nmartingale 3n
(,,F,Po) and

dLt = h(t)Ltdy(t), L0 = 1 (4.3)

(4.3) is the crucial relation for what follows.

In order to state the main theorem, it is convenient to

introduce the functions

2n (t , , sn  's ~ ~ h S 'h S ) n > 0

kn(S ,"' ,sn  : Enh(S))...h(sn)} n > l

Note that in (4.4) the expectation operates on rancom variables 4rich

depend only on the x(. process, whose la w is ivar 'n 'ncee tne

change -rom ? to ?. 0 ence, we can also '.,rite

n s,,'',s n ETh

•,I
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Ancther useful process ,s

t r
kr) = rI. h(SI).h(Srsl r+dy(s r+ ) -..ay(s,

0 0

The existence of Ltr , a multiple stochastic integral with

random coefficients, will be Justified shortly. We now state

multiple integral expansions for ft"

Theorem .1

T

2 ]r ,
(i" ~ E r2()Kh(u) <,

h (c)d r  and h hrI<,
0 0

n= I(r)(~~) + E0'f(t)LL :
; ~n=l ;.

t r (r)~1 + 7 1 (k n )  'L
n=l

T

(ii) If E[exp f h2(s)ds] < - and Elf 2 texp " 's :Z

0 JO

Zo(t) + n)z
n= lit ( n )

1 + , t ()
n=1

and the infinite series 4n (4.7 ) In e

mew, z,
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Remarks I. 'de call (a.6) the partial filter ex;ansion and .

the full expansion.

2. The expansions are essentially series evaluations of the

Bayes formula (4.2). They work by "separating" the x(.) and y(.)

dependence in (4.2) by expanding Lt; y(-) appears only when integrated

in multiple integrals and x(.) is integrated out in the kernels. The

kernels, therefore, require only knowledge of the apriori distribution

of x(.) and can be computed offline prior to filtering.

Theorem 4.1 has the obvious generalization to vector valued processes.

The proof of theorem 4.1 requires that we handle integrals
of the form o(r)

t -

t r -
h(sl)...h(Sr)dysr) ...dy(s, 4.8)

0 0

whose kernels are random, nct deterministic as in chapter 2. These

are easily defined by iteration. For this, it is convenient to wcrk

with the measure POI with respect to which (y(t),G t ) is a 5rcwnian

process, so that we may apply the standard theory of stocnastic

integration, (see, e.g., Liptser and Shiryayev [23]). Thus, if

(t) is a measurable, g-adapted process sa isfv4 nc

L :s\:s < : , we have an 4n:aecral :s dys', 4' j a
1 ,t wI .h

ierso n . n at 3 :~ (S1sj~) r
3<t<7 ].

]h41iyaze E ' . - . - e c o'- si 7, e: !: s_ h-. s: 0 s :
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enough to guarantee tha: (4.8) is well defined for all orters r.

indeed, .(t) = h(s)dy(s) is certainly well defined, and, moreover,
JO

T T

Po~i h2 (s)', 2(s)ds < (sup !,(s)! 2) h2 (s)ds < = 1.
0 - [0TI 0~

Hence t t sl

j : r i h(sI)h(s 2 )dy(s 2 )dy(s,)
0 0

is well defined, and we can continue in this manner to ali orders.

Similarly, by choosing a continuous version of L., we car, show

st r

4 'Lr" sL dy(s >"dy',s I )
k : 0 i r+ r+1

is well-defined.

We shall also encounter expressi ns o the :orn

t

EC p(s)dy(sF y} ,

and for these, the following "stochastic -ubini" t.1eorem is usef.

Le-ma 4.l Let (b(t',,,) be a stardar2 'iene - :rcess d a et

-t *:bs) s<::- "cr p e e bi. U 3'

~2 -

:t-adapted 2rscess sc, -nat S S_
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t t
EJ (s)dbks,"Fb:=E() ~b

'0 L

;- ~ ~ J 5OJ;;;

Proof Liptser and Shiryayev L2].

Proof of Theorem 4.1 Parts (i) and (ii) are both consequences of a

multiple integral expansion for Lt . indeed, f,4.3) implies that

t

Lt = I + F h(s)L dy(s) (4.9)
JO

iterating (4.9),

Lt = 1 + F h(s)dy(s) + i I h(s )h(s2 L5  dy(s 2 )d,(sI
0o O 0 2

t t

Lt I + 0 h(s)dy(s) 0"

Shs dh(Sr)dy() ... d"...Srl

+ L r (4.10'

Now substitute this last expression into

Jy
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The denominator, -:,.r example, :ecomes

S
t Sn-Ir I . "

E (Lt;F :, I} + E h(sl)...h(s )dy(s
n--1 0 ***JOn n

+ E (L (r),FY (4.li)0 t I -

7 2
The hypothesis EF 2(s)ds]r < of part (i' allows lemma 4.1 to be

JO
applied to the terms of (4.11), with the result,

r Sn-I

Eo[L:[FY l + 7 ... h(si).h )}d..Sn)..dy(s,) +

( L r ) '  r nl, ) : r . '.
." :L FY} : + L It(Kn + 1 1"

n=l

A similar calculation applies to Eo0 f(t)Lt : "., therety completing t,e

derivation of -he partial expansion.

Formally, the proof of the full expansion follows 'y

setting r = --in (4.10). To prove it rigorously, we first sc'.w
rT 2

that Z exp[ h (s)ds! < - implies

N rt rSn-l
L = n. s.(p" lim[l ( d "nS..h(S)...s dy 1.. is. ' .:enot i-- rn n e h

e no te e n t ie s eries o n - Ie ri h t n c si e 2 - D: e ro
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N 2
, 0 N (Lt A rt) J " . .J h(S I) ... h(SN_-i)L s  d~ y( 1 1y+l)]ZoL't)  O- "''O 5N+I ~ l'

By employing the standard computational rules of (2.1) for stochastic

integrals, this last expression equals

t SN
IN

E ""[!EOh 2 (sl) ...h2 (S)L! 2 ds,*.ds'10]d v J.-.ds I i

provided thaz it is finite. However,

2 2 2"oFh2(Sl)'"h2(SN)L sN I

+ 1+1

: Eo~h2(Sl) .h 2 ( (42(• - (SN) expr-~ h2(s~ds] jl.

0sN+ 1

E0oexp[2 h(s)dy(s)]Fx.r -0 " SI

4ith resect to .ox - and y() are indeoendent and i . -5rE '.4r7 n .

N+l
Hence, given >(s), s < s , h(sldy(s ) is a *aussian ranccm aria:.e

with mean 0 and variance hT(s)ds. us
Jo

N+l N+
j3xp 2 h(sdy(sFx : e 2 hL~s'ds (4 1 J7_0 _,ex : 2 h(sS. sd,

Therefore, apolvin. '-. , to a 1 o

• . • .:, , - l aw w . . .. •."
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2 2 )ds

S N+I .l .E h2 (Sl) . .h2,S~ ) J 0 J

and hence

S sN+1
. .. I . r, h2 , 2L2 s ...SoOn(Sl h SN+ N+ IJO • "" ( s ~N+ s ..-

- S

2 2,
S ,," ... . h sI t. .s

J=N ; 0 a l " s )] s .s

Since -exp : h-s)ds'l < -, (4.15) tends to 0 as N - , anc thus

L -n.s O 1 im A,, for al t < T. Lemma .J can ,icq :e nvokec

for every order r, so that

-_oL Y = Eo~rnS. lir A1I

0- t

= .s . ! ir n - "

IN

= .s.',-. :;m~ - .

- - n-
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.4 simi'ar proof expands E0 ft)L. F in:eSer~e

z (t) + ~'In(z)

Finally, to derive the L 1(P) convergen ce, note that

2 2 T 2
E0 ~~- EL = E'exp h sj'dsl

Thus
yN

EjE [L tFf] - (I ' nk))

21/2 dP 2 12n -2

0 1 %

Thus because oif (4.12) , E 7L t FYI] (L (P) ) lim7 El n (k
0- t, t n=1L n

as claimed. This completes the proof of theorem 1. i

Let P(.i,t. FJ) = EDl x(t))Fy'] denote the c-oncitioral

distribDution of x(t) given the observation up t.o time

Co-o 11a ry If K-exp Ih 2 (~s

El (x(t)) ~ n~. (E x(t))h~s)..h
A ~n=1 s)..l

1= n

Srea:e: -or~iula 4s al- 0-- interest. - 35'~ .~

"x~ , t. x(: as a odtca enisity g-fven ~
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p(x't) Ftj =

Using the same techniques as above, we can easily derive

for the numerator of0 p(x,tI!Fy). (4.16) is often called the

unnormalized conditional density.

Theorem 4.1 immediately suggests a scheme for apprcximat-Ing

filters, namely, truncation of the numerator and denominator series

after a finite number of terms. 7he kernels of these terms are

evaluated off-line, and, if necessary, apprcxiimated by secparabie

versions. Construction of the multiple integrals as Outputs o'f

stochastic diff14erential equations in the manner of: theorem 2.3, rthen

provides a finite-dimensional recursive realization of the

approximate filter. TError analysis of this method is di-fficult, evenl

in the case E~exp irh 2(s)ds] < ;because truncation occurs in both

numerator and d-encminator o.F a ratio and because th-e error tearms are

hard. to bound. :ne mic ht also acroimtete urrormal zed :o-nr--4t4 ra'

px t;)b afnt series, uta -.o :~c c to t11 sc erme

is tnat one cannot- cu,-arantee tr:, rxat*, xr.
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An alternative is to discuss cumulant expansions

p(x ,tiF ) = exp n
n 0

Eterno [11] studies ideas like this in his thesis.

4.2 Best rth Order Filters

The most common and extensively studied suboptimal estima:or

is, of course, the best linear filter. This is an estimator

t
7t = a0 + f a (ts)dy(s),

linear in y(.), and satisfying

]2  12i
Ef(tl)-f 1 < Kf(t)-(bo+j  it,s)dy(s)) 2

t 0

for all other choices of b0  and b(t,s. The philosophy

applying multiple integrals naturally suggests that one seek better-

than-linear estimates by adding higher order multiple integrals terms.

Definition 4.1

r : r ,(i) '{r ,a( t):a0 (z " "n 'a an (t s,,''" * <T] n, ,

a~i " /"<:ana 0 n ' -
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(ii) a(t) ;. Y is called the best r orcer 'i1ter of , i,r'

2 _ - , OIy(s) s<t, if Erf(t)-a(t)]2 < E~f(t)-b(t), for t < r all

b(t) e Yr" The kernels a (t) of a(t) are then called the

optimal kernels.

Existence of a best rth order filter is not immediately

guaranteed. a(t) amounts to the projection of f(t) upocn

Yr(t) = {a(t) a(.)Y r}, and, for this to always exist, Y must

be closed under mean-square (2) limits. An easy sufficient condition

is

Lerna 4.2 I E( h-(s,) < _, then Y,(t) is mean-square (2) closed

fort <T.

Proof Apply lemna 2.3 to observe that, under the hypothesis,

,-rn( 2<\ 2E Ti(k)] 2  < , k

A2 ])for n < r, L 2 [C,-

To find the best rth order filter, one must compute

the optimal kernels. Accordingly, in theorem 4.2 we show how to use the

muitip icat:en formula and the filter expansicns to deriv:e n, ecra';

equations for tea C < n < r. -his recuires t:o :reli4narj

lemmas, cne to restate tfle rcblem, t.oe o .er, o /e!-- -

'cen'. e assume tnr c7c r e to n cs e" s t c".
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Lemma 4.3 Let z,v L (Z, Ft,). Then ..z-f(-> ) <?

2 2if and only if E(z-f(t)) < E(v-f(t))

Proof f(t) equals the projection of f(t) onto L2 (,FYP). Since

z-f(t)E: L2 (.,FY,P), the projection theorem implies

E(f(t)-f(t)) (z-f(t)) = 0

Thus

E(z-f(t))2  E(z-t))2 + E(f(t)--t))2  f ,t f t z

E(z-f(t))2  2f(t)--(t)

Similarly,

2E(v-f(t))2 El,,-;%rI I LE~v-~t))= E.-, ))- + E(f(t)-f(t)Y

r

Lemma 4.4 Let c(t) Co(t) + I (n(c , Y (t) and assume that

T T
E((~ ~ h (,d) E f 2(t)(i' h 2(s)ds)" < Then

Jo JO

E0 (c(t)E(L r)!Ft}; = 00

- " t'3

| I •I lr i Ir)
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Proof From (4.11)

r
({Lt j~ ,,Ltt nh() v n(k )

and, therefore,

E (c(t)E (L (r) JFY:*} E c(t)E [L tFy]

r n
E Ec(t()C + 7 I.(k ~ (4.19a)

n=l

Since y(-) is Brownian under P0

n-1rr
E (t)[1 + 7 r~k)'- s . ,

E;[h(s I)--h(sn )'ds ds1  (4.1%1

'However,

P

t sn-1
C t + 7 s . '
0~' nT~' nO

E[h(s 1).. h(s n)ids n*ds 1(.0

by lemna 2.3. 'pilyin-, 4.19b) and (Ki.201) in (4.19a, y4Ce'(s

- y
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(4.18) is established in analogous fashion using a version of ',emra

2.3 for e-pressions f~1  fl ), n < r, under the condij:iontn
E2(t(h 2(s)ds )r , < =

T

Suppose now that E( h2(s)ds) 2r and a(') Y r By

expanding E oLt FY] as in theorem 4.1, we obtain
0 t

r
a(t) E[LtIFtI :ao(t) + n7 I (an(t))]

0 tJ- t n

2r (2r
[1 + 7 I (k.) E E.-L ( 2 FY.] .(4.2l

j t

Using the multiplication formula, we can then calculate kernels

gj(ts,'",sj) such that

3r ' -. ( 21

(4.21) go(t) + I (gj(t,s ,s + a(t) Eo L2r F (4.21a,
j=l ' t

:ndeed, for C < j _ 3r, direct calculation with (2.11) gives

7 (imn-2i )La ( ( k. .gj Z mI )am~t]i ./ k i(4.22
) m_ l n i "(m,n,i

7hcei1. smm .T': a~ ~ ;
-d *

. .. . l ] I I II I I I I II • [ I II ll .. . . . .....
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a(t) is the best order estimate if anrc only if

gj(tSl,,,,, s ) : E f(t)h(sl) . n s ) ( j S , . , )  (..23)

for I < j < r.

Remark The equations (4.23) comprise r + 1 integral equations for

the r + I kernels aj(t), 0 < j < r. This can be seen from (

and the definition of (D and will be illustrated explicitly in the

examples to be discussed.

Proof Because of lemma 4.3 it suffices to show (4.23) holds if and

only if
2,a t -,l ) < E[c(t)-( r , 2

for all c(t) - Yr(t). Since

Er:c(t)ft 2 = E~(t)-a(t)] 2  - .-'a, < , 2=[,ak., _

t!his wi'l occur if 3nd only

:.Simms
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Thus, we will demonstralze (4.24> Begin by noting zha:

dP

dP t' 0 dp, t -OL t. tj'
0

Then

E~c~t)-att)Jaatt)-f~t)] =L E --t t

EO[Lt IF

L; dP0  t 0 - <()L.;i

E E ic(t)-a(t))(a(t)E [L)!Fy- - E jf;(t)LF>. .(25

Now use theorem 4.1 (i)j and (4.2la) tO evaluate the term

a,,t)E [Lt iF] -E 0L~) FY

= -f 2r

3r-

j=2r- 2

7is s Ees -'v- r, n ~~-

'ntecr~3 - cr-rccsna, .. % ~

c



(4.25) c(t-a() tz 0 :

rS r

+ c.(t's,,***,s.) -a't's1

[g.(t's1  ...)Sj) - Z (t's. , Is .)]

+ E ((c(t)-a(t))a(t)E 76L.~)

Telstw tem of(4.26) are zero by lemma 4.2. Thus, it is

clear that ( 1.26) is zero if-F

I= Z0, 0 C< j<r

This comp'leoes the pr-o- .

The technique o-F theo-rm 4.2 extencs to other prcb"efrs as

well. Suppose, -:or instance, that a filter

a'(t) = a5t2

07 Ortee q '.s available; a 'ne' not oIe '_!- :e--st

lilter. Let - :i, and, a..e, -.-an as r ',-.e :-es' :ce

ile r, e t see tne 9 ez

_7er2~'C7 '
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q -r

S jl j=q-l

where a.(t), j q + . are free to te chosen. :efine tne

kernels gj(t) as before:

33 y~)0 L9~ ~(t 3r . ,(2r<Tv

a(t)Eo1L.IFy' = go(t) +7 I(gjit)) + a(tE, ;

Theorem 4.3 Let the hypotheses of theorem 1.2 hold. Then a 4) is

the best rth  order correction to a t] if and cnly if

gj(t,s.,. ,s) =Eff(t)h(s hs q .- < 1 < r,.27

Proof As before, it suffices to shcv tnat ''.27, holds izf

E[c(t)-a(t)]a(t)-f(t)] 0

r
'or all c(t) = a'(t) + 7 J.c.( ). By the same calc.z:;tns as in

j=q+l
theorem 4.2

= E)c-t)a( t)[a(t)' F t Y -

r c2r

-- - (t-,. '

3 r

, = I ' ,-,. ; r2r - -_ -

- S.
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This e quals zero iff7 g : l: for < - 5 <_ .

Remark Clearly, an analogous result holds for the case in wr.,cn ar

arbitrary subset of :aj;~: is given and the remainder are chosen

as to optimize the mean-square filter error. Thus, if

a,, j ,q, _ :0,l, .*,r} are-given, then the a,., ,

j . J are optimally chosen iff g = z for eve ery

-:o O,l,..r}- ..

As a first example of theorem 1.2, let us compute the

kernel equations for tne best linear estimate f(-= a_(t"

a.(t,s)dy(s). From (4.22'

t

go(t) = ao(t) + a

9l ( t ' s  t' + . . . ." - a= a. ....-

The kernel equations are then

30t. + a~(,E('~

t
a ± - -- a a, s ' or,

eliminating a : cm :-om "he secort eczluaor,
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tp

ao (t) + al(t,)h(<dz

t

al (ts) + a (t, covFh'. ),h "7 -- .c v . "
JO

(4.28) is, of course, the well-known Wiener-HooF type equation 'or

otoimal linear filterinc. Before examining higher -rder examples,

we will discuss the Kalman filter.

4.3 The Kalman cilter

Consider acain the signal-observation system (3.1) in

which the state x(t) is a Gauss-'1arkcv process solving a linear

stochastic diFferenc'al equation driven b'! Srcrne';a.n motion, and

h(t,x) = H(t)x(t). The Kalman-3ucy theorem, summarizec in, emma 3.1,

shows that the state estimator x(t) Ex=  F''. satis-ies t7e

equation

dx(t) = F(o)xt)dt - P(t)H tTy- - H ,{" t'

0) : 0

where P(t) is a determinis'ic functicn. (see chapter 3 for e- :i n cns.

Let t(t,s) be the state transition matrix o' ." P> ' ,

Then, 'ne scljtin *n3 1. 279 is

.e., the octma7 e7:,ma-e 2s nesr '



is of interest o connect tnis resu. :to tne excars :n

forMulae of t ,eorem . . :n the case of a scalar signa,

satisfying :3.1' and h(-,x' = x,( '.7 yiel. s, at least rma l v,

Ex(t) 7 ,r "T(E'x- t)x(S 1)..x~sJ) ,

x(t) =j, (4.-0)
1 + Ij (E(x(sl " x s )

and both numerator and nominto are trul inf n te s -s Th

general representation obscures the linear s-ructure o-: x't -e

techniques 'cr apclying the e(:ars-cn cr-uae, 7cuk at eas-: ncuce

methods for deriving the linearit/ :-: x' :m 4. 3 n fc-.

theorem 4.2 can be parlayed into a pr c - avan-:-'

and we present this here after a ea zc;-r -.s.

One common Pro.' of the Kaman-P'-cv -_heorem ir VK e

stochastic Jif-erential equations for me condct!ora mcmer-. ,,,en

x(t' - h(:) and h(t,;, = x, where o , a sca i ,' C ac t ,

these are

n nxn n-2 -',<( n - '~' 3

arZ d--.a ~t)- i~ - - ,,' ', c o,
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not yield themselves to a direct solution. Rather, they require

additional information, namely, that (x(t),y(t)) is jointly Gaussian

and that, hence, by limiting arguments, the conditional distribution

of x(t) given (y(s)0 < s < t! is normal. One can then conclude

that the conditional variance E(x-x)2 IFY] is a deterministic and so

effectively truncate the system (4.31) at n = 2. (4.29) follows

easily [see Kallianpur-Striebel C23]]. By contrast, the derivation

of x(t) from (4.30) does not involve knowing the form of the

conditional distribution, an object, that, in the general filtering

problem, is not often in hand.

Let us develop our proof of the Kalman filter for the

simple case

dx(t) = db(t) x(O) - 0
(4.32)

dy(t) = x(t)dt + dw(t) y(O) = 0

in which b(') is a Brownian motion. We do this in the interest of

computational simplicity; the proof carries over to the general case.

Theorem 4.4 x(t)= Ja(t,s)dy(s where a(t,s) satisfies the#0

Wiener-Hopf equation a(t,s) + foa(ta)(s o)dc = s, t > s, (4.33)

(s-a = min(s,a)).

Proof Since y(') is Gaussian, the set of polynomials in y(.) is

dense in L2 (z,FY,P), a fact presented in the discussion of hcmc-
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geneoustchaos theory in chapter 1. Therefore, it suffices to show

that a(t,s)dy(s) is the best rth  order estimate for every r,0
I <_ r <- . It is true for every r, T < -and t < T that

E[ b2(s)ds r 
< - E b2(t)[ b2(s)dsjr < . Theorem 4.2 thus applies.

f to

That is, t0a(t,s)dy(s) is the best rth order estimate if and only

if

gj(t,S ,...s ) = E{b(t)b(sl)" b(s)}, j=0,1," ,r

From (4.22)

g0(t) = 0

S[ j(t,Sll,-",s ) j (a(,-, -)C)(t)kji-l)(Sl , 's j )s

+ (a(t,. )O(t)(kj+l)l)(sl,",s j ) j > 0.

Now

j(a(t,. (D (t)kj_l)(sl, '" , )  a(t,s 1( )

Eb(s )) b )

a(t,si)Efb(sl) " b(Si_,)b(Si+l)"" b(s

and
(a(t , ) i (t)(kj+l ) lsl . S )

t a(t,)Eb(: b(s " (s ) .d c
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The kernel equations become

0 = Eb(t) (4.34)

t

S(ts) + a(t,a)E{b(a)b(s)}da = E[b(t)b(s)] (4.35)

0)
i a(t,si)E~b(SlI)'"..b(S i-l)b(S i+l )'"b(Sn)

t

+ J a(ta)E{b(a)b(sl)...b(sj ).do

= E[b(t)b(SI)- .. .b(sj) (4.36)j

2 < j < r

(4.34) is true by definition, and (4.35) is just (4.33). We now

claim that if a(t,s) satisfies (4.35), (4.36)j is true for all
rt

j > 2. This will imply that the equations for I a(t,s)dy(s) being
the best rth order estimate are satisfied for every r, and will

complete the proof. To do this, assume a(t,s) solves 4.35, and

observe the identity

E{b(a)b(sl...b(sj)} = (7 ̂si)E~b(sl) . b(si. )b(si+l)'"b(s)]
i=l l

(4.37)

(4.37) results from a direct application of lemma 3.3.

Now substitute (d.37' into the left-hand side c1 (4.36)j

and use the Wiener-Hopf equaticn for a(t,s',:



- 95 -

J
ila(t'si)E[b(sl) "b(Si-l)b(si+l)'"b(sv )]

t

+ f a(t9a)E[b(a)b(s)"...b(sj)]daf0

j t

= Z {a(t,s i) + r a(ta)Ca-s]dal E[b(sl)...b(si 1)b(si+...

= ,(si-t) E[b(s.)-..b(s. )b( ...b(sj)

i1 1

= E[b(t)b(s 1) .. b(sj) .

The last equality employs lemma 3.3 again and validates (4.36)j for

any j.

4.4 Quadratic Filters

In this section we treat best second order, or quadratic,

filters as an example of the theory of 4.2. We first present the

optimal kernel equations for this case and then show how they may be

solved. To guarantee validity of the discussion, we assume throughout

the hypotheses of theorem 4.2 for r = 2:

T

E(i h
2(s)ds) 4 <

T

Ef2 (t)(1 h2(s)ds)a vt <



-96-

Deriving the integral eqations is simply a matter of

calculation. Let a(t) = ao(t) + a1(ts)dy(s) +

,a(t,SlS2)dy(s)dy(Sl) be a quadratic estimate and let

00
gj(t,sl,"-,sj i 0 ) < 2, be the kernels associated with a(t)

in the manner of (4.21a). Thus, using (4.22)

g0(t) - ao(t) + Cal(t,.)] 1 C (t)[kl1 + [a2(t,-)] 20(t)[k212

g1(t,s) = al(t,s) + ao(t)kl(s) + Cal(t,)]l 0 (t)[k2]l(s) (4.38)

+ [a2(t,)] l 0(t)Ekl]l(s) + [a2(t,.)] 2 O(t)[k3]2 (s)

g2(t,sl,s 2) a2(t,SlS 2) + a0(t)k2(s1 ,S2) + [al(t,.)] Q(t)[klJ(s,,s 2)

+ Ca1(t)]I1 0(t)[k3]l (Sl'S 2) + 2[a2(t)]1

( (t) [k2(S, 2

+ [a2(t)]2 0C(t)Ek4]2 (sls 2).

By theorem 4.2, a(t) is optimal quadratic if and only if

Ef(t) = g0 (t)

Ef(t)h(s) = gl(t,s) (4.39)

Ef(t)h(sl)h(s2) = g2(tSls 2)

Now evaluate gj, 0 < j ! 2 in (4.39) using (a.38) ana the

definitions of 0 (t) and k.. The result is in its 'jI! blwn3
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ugliness,

Ef(t) = a O(t) + + Jts)tJ*Sl +a 2(t,s,s 2)Eh(sl)h(s2)ds~dsl

0 00 (4.40a)
t

Ef(t)h(s) = al(t,s) + ao(t)Eh(s) + a~~)hahsd
0

t It K
+ f a2(t,s,a)Eh(a)da + j ( a (, 1~)Eh(al)h(z2)h(s)ds

0 0 (4.40b)

Ef(t)h(sl)h(s2) = a 2(t,s1,s5' + ao(t)Eh(sl)h(s2) +- a1(t,.s,)Eh(s 2)

+ a1(t,s2)Eh(sl) + {oa, (t,.)Eh(c)h(s I)h(s 2)d--

+0 [fa2(t,s,')Eh(a)h(s 2) + a 2(t,s,-.)Eh(:)h(s 1) dc

+ F 1a2(t,c, .- )E,"h(s )h(s )h(;1 )h(,,r9}d--dc, (4.40c)

JO JO

These equations deserve some elementary remarks before we set

about solving them. First, the optimal kernels are all interrelated

in the general case. We cannot solve for aoand a1, independently

of knowing a2 . Likewise, if a 0 = co I a1 = c are the kernels

of the best linear estimate, they will not, in general, te the lcwer

order kernels of the best quadratic estimate. Secondly, '.,e

equations (4.40) can be ised for other subootimal Jesigns in the

soirit of theorem 4,3. 71hus , if a n a I are aiver, ano wMe
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rt
seek the best quadratic correction to a Oct) + 0a I t,s)dy(s)

this will be found by solving (4.40c) for a2 in terms of a1  and

a. The methods developed for solving the full set of equations

(4.40) will also apply to this problem.

To solve (4.40), we first eliminate a 0  and a 1  to derive

an integral equation solely for a2  a is easy to handle. Merely

solve (4.40a) for a 0(t) in terms of a1 , a 2 , and the known

functions Ef(t) , Ef(t)h(s) , etc. and substitute this expression

in (4.40b) and (4.40c). To further simplify, use (4,40b) in

al(t,s1)Eh (s2) + a, (t,s2 )Eh(sl) of (4.40c), We thus derive

O~t)= Cft) 0a1 (t,,7)Eh(a)da - rOJOa2tl2)Haih(2)

(4.41a)

t

a 1(t,s) =cov~f(t),h(s)] - fo cov~h(s),h(a)Ja I(t,a)da
t

- fEh(a)a 2(t's a)dc

,- r cov~h(s),h(a )(Na (t,or C )dc dc1  (4.41b)

a2 (t,s1,s 2) cov~f(t),h(s 1),h(s 2) - fcovrh(sl),h (s2) h(,,)]a,(t,7)dc

t

jt r 20 cov~h(sl),h(a)1a 2(t,s2c) +cov~h(s2) h(-)la2( tsI;)dc

-0 co1 1 ,0s)h:)~z)a(,. ~)~J

IC
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(In these expressions, COV[Xl ,. xr] : ECxl-Exl) .,.(x -Exr),)

We have yet to eliminate a1  from (4.41b) and (4,41c), but

this requires some more notation and a bit of theory. Define the

operator R1(t): L2([O,t]) - L2([O,t]) with kernel

rl( ,a) = cov[h(s),h(a)] by

t

(RI(t)g)(s) = focovjh(s),hca)]g(o)da

Rl(t) appears in (4.41b) and (4.41c), In particular, (4,41b) may be
rewritten as

t

[I+Rl(t)](a,(t,))(s) = covrf(t),h(s)] - {Eh(o)a 2(tso)dc

t L 10

- 0 10 cov~hks),h(ollh(a
2)]a2(t'l'al2)d2dc, ,

(4.42)

and thus, solving for aI  in terms of a2  requires inverting

I+R1(t). Fortunately, this can always be done in an explicit way.

Lerma 4.5 t

i) h(t) has a best linear estimate ;(t) =o(t) + a(ts)dy(s)

t < T . lithout loss of generality, we take al(t,s) = 0 for

T> > t >0 .

ii) I+Rl(t) is invertible, and [I+Rl(t)]'l = l-Q(t) where Q(t)

is the integral operator with kernel

q(t'sl's2 ) a l(Sl'S2) + al(S2'Sl)

t

a (Cs')C1(:'s2)dc,O < sit s < t
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Proof ECI h 2(s )ds] guarantees that ;(t) exists (lemma 4.2)
JQ0

and, as in C4,28)

al~~ + .li 1 (s1 ,a) cov~h(s,),h(a)]da

cov~h(sl),h(s2 )] 0 < s 2 < I1

ii) follows from results of Kallath and Geesey (Geesey D£1,

Chapter 3). These imply that, under the hypothesis

fcovh(s),h(sflds < which is certainly implied by

E((h 2(s )ds 34 < I+Ri(t) is invertible and its inverse has theJO
given form.

We now apply this lemma to solve (4.42) for a1(t's)

rt
a I(t,s) =cov~f(t),h(s)]J I q (t,s ,7) coy C f(th (c) ]dc

where

r' (t,s: '2 2 = 1 cov~h(s),hc~ '2

1 q~~'r)hu)--q(t,s,cl9Eh~j)

+ 1~ {q(ts,.7) coy [hn(,-) ,h(z: )h(,: )]dc

In deriving r' ,we took advantage of the svmmetry of a72 t,

symmetri ze r' .Finallv, we substitute (l-1.431) iinto (21.1c) to ce:
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a2(t,sl s2) = F(ts,s,2 )

rt

- joErl(s l a)a 2 t,s 2 , c) + r l ( s 2 , 7)a 2 C, s l , 7) ] d c
1t 1 t 2 1 2

i t 
(r2(t,Sl,s2,,

1 ,2)a2(t, 1, 2)dc2dc I  (4.44)00

where

F(t,s l,s2) = cov~f(t),h(sl),h(s2)]

ft 

:

- covch (s)h (s

rt

i q(t,ol: 2) cov [f(t),h(' 2)]d2)daJO

r2(t, ,s 2 ,zI,, 2
) : [cov~h(sl),.h(s2)'h('l,)'h(:72)]

- cov[h(sL),h(s2)]coy n(.l),h(c2)]

(t
-Icov~h(Sl ),h(s2),h(n)] r (t,, . 1,.2,d-
Jo

We have shown that if (ao,ala 2) solve (.4O) then a2  solves

(4.44). Conversely, by reversing the steps of this derivation, if

a2  solves (4.44) and a0 and a, are defined via (4.43) and

(4.41a), then a0, a1, a2  solve (4.40).

(4.44) is simoly a linear integral for a2  ' However, the

middle term of (4.4"), involving a tensor contraction between a-

and r, , is non-standard, and the usual linear integral equation

techniques to not directly apoY.. >n what 'ollows, we wil! shcw r cw



- 102 -

to eliminate the tensorcontraction term to derive a Fredholm integral

equation for a2 , thus reducing the kernel equations to a well-

known problem for which methods of solution or approximate solution

are readily available.

It is useful to do this in a general context,

Definition 4.2. Let 3(slS 2 )eL
2 ([Ot]2 ) and let

Y(slS 2 ,alc )E L2 ([0 ,t] 4 ) such that y is symmetric in sl, S2 . The

opera-or : 2 ([,t]2) (0

( 1c)(sls2) : [ ]1 )(t)[c]l(sl's2 ) +Jo 0 2 2 dc 2dcl

is said to be of tensor zontraction (T-C) type. The kernel can

aio- be used to define an integral operator on L2([Ol,]) , which

we will denote by B , and, in fact, we can write

[P (t)[c], (S,'s) = [.(slJ)c(s2,7) + ;(52,.j',sl

= (Bc(s2 ,.))(s1  ) + (Bc(sl. ) )(s2)

Remark: It is of interest to note that, while the second term of

2 is the usual compact, Hilbert-Schmidt operation, the tensor

contraction term is not compact in general. Since compact operators

have finite dimensional eigenspaces, we can prove this bv sucol'inc

a such that 'crL2([0,t]2 >c ) is in0inite

dimensional. t is easily seen tha
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M

(slS2) = ,(sl ):i(s2 )
1:I

where the <. , 1 < i < M < are mutually orthogonal, will worK.
..M

Then if are functions orthogonal to Span','-,

M
C(slS 2 ) = [ i(Sli(s 2 ) +oi(s 2 ),.(Sl)] satisfies c = 1 (s.(t)cl.

i=l

The space of such solutions is clearly infinite dimensional.

For a T-C operator ' characterized by kernels 3 and y

we want to solve the integral equation
c F +7c , F L 2 ([O,t] 2 ) (4.45)

which generalizes (4.44).

Theorem 4.5. Suppose that I-B is invertible and

([ l-B - )(s) = p(s) + at I (s,j) (u)dc 3 l .L2 (CO,t]2)

Then, if c = 7c has no non-zero solution, i-. has a bounded

inverse.

Proof Using (1-B) "  we will derive a Fredholm equation for c

from (4.45). Thus, suppose c = F ± 'c. From the definition of

we have

tt

c•s1,s2) - )I 2s ;css:,zSd

0 O1 2" ' ' 2' 0 Vi=s1 s2)-r 3(s, (s7a

• ,-+ " 's ...... I I 7 T

1a 0 o



- 104 -

2y inverting I-B and rearranging terms, we derive

£(I-B)c(.,s2)1(sl) = F(slS 2 ) + 1OSI(s2,7)F s,,)dc

+ t 0Y l (sl 's2 l a2 )c(g
l 'a2 )dc

2da1  (4.46)

where

Yl(Sl'S2Val' T2) = Y(sl 2s 2 '71 'C2) + (s2, l)S(s 1,72 )

+ i 1 (s2,n) (sl27)l",2 )dn

Now invert (4.46), to get

c(sls 2) FI(sl s2 ) + r 0¥3(si,s 2,7 C71 2 )c(c1 , 2 )d 2d a1  (d.47)

where

F 1(s1,s 2) F(s1,s 2) + f l(s 2 2 )F(s,, )da

+ ft 1(s1,c1 )[F( ,s2) + j (s2,:,)F('1 " 2)d 2 d;1

and

Y3 (S ,s2 3a 'a2) :',1 (s 's2'cl ':2) + It~ (sl n)yl (fls 2 911  2 )dr

(4.47) is the desired Fredholm equation for c ; if c solves I

c = F + 7c then c satisfies (4.47), Conversely, if c satisfies

(4.47) then c = F + Pc . Analogous reasoning shows that c = -c iff

,-(Sl, 2 :s (7 c ( l S ) "3 I, -S
-s02)' ( 3c)(s 1,s2) 0 3 2 2
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Thus, if c = .c has no non.zero solution, neither does c 3 c

But is a compact operator, and hence the Fredholm alternative

theorem implies that I-T"3 is invertible. This clearly implies that

I-F is invertible also.

The statement of theorem 4.5 may seem odd because it does not

focus on the central equation (4.47). This is done to emphasize

that once the Fredholm equation is derived, we need conditions to

guarantee it can be solved. Stipulating that 1 not be an eigenvalue

of r provides just such a criterion. Further, the statement of

theorem 4.5 may be extended to a sort of mutant Fredholm alternative

for tensor contraction operators,

Corollary. If 1-LB is invertible and X is not an eigenvaiue of

I , then I-," is invertible.

Proof. Completely analogous to that of theorem 4.5.

The equation (4.44) for a2 (tsls 2 ) isof tenscr contraction

type; in fact, we may write it

a2(t,s1 ,s2) = F(t,Sl,s 2) + [R(t)a2(t,.)](s l,s2) (4.49)

where R(t) is the tensor contraction operator characterized by

the kernels (al 'o2) = 2r('1  
) and

Y(sl ps 2 $,al a2 )  = -r 2(t,s l~ s 2 ', l 'Z2
)  ,

Theorem 4.6. '-R(t) is invertible and a2(t.,.) is the '-nicue

solution of

%I



-106-

rt rt
a2(tsS2 = F(t, s) + V1' , : 2 )a2 (t* 2 dc2&

(4.51)

where

t
Fl(t'Sl'S 2 ) = F(t'Sl's 2 ) 0

d 2da1

tt
+ J f q(t'Sl' -l)q( a2 2Ft'l )dc2dal

t

y(t'Sl's2'ala 2 ) =yl(t'Sls 2 ala 2 ) F q(t,s,u)y,(u,s, cl , 2 )du

Yl(tS lS2,l,'02 )  r 2(t,.SlS2i, 2  - ~~2 )q(t,s, 2

= Va(~1 s 2 c.a 2 ) - qtsl,"2

t

+ f q(t,s 2 ,u)r2(t,sl u ',' 2 )du

0

Proof From theorem 4.5, it suffices to show that 1 + Rl(t) is

invertible and that 1 is not an eigenvalue of R(t). The inertibility

of I + R,(t) is proven in lemma 4.5. The eigenvalue ccndition

is a consequence of the uniqueness of the best quadratic estimate.

For suppose that c(sl,S 2) = (R(t)c)(sls2). Then a (t,sl,s 2) =

a2(t,sl,s 2) + c(sl,s2 ) would also be a solution of (4.44), and hence,

if a6(t) and aj(ts) were defined from a(t'sl,s2 ) via (a.43) and

(4.41a), a6(t),ai(t,s),a (tsls 2) would also satisfy the cotimal

kernel equations. This contradicts the uniqueness of the best

quadratic estimate. The definitions of -1 and -, follow from

- $ C
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the proof of theorem 4.5. Finally, note that if . denotes the

integral operator defined by y, I + Y is invertible and hence (4.5l

has a unique solution.

We have thus reduced the complicated kernel equations (4.40)

to a simple Fredholm equation which can be solved by standard methods.

Moreover, we can achieve a similar result for the problem of

determining the best quadratic correction to a linear filter, which,

as previously mentioned, requires solving (4.40c) for a2  in terms

of a0  and a1 . Again, (4.40c) is an equation of tensor-contraction

type for a2  and the tensor contraction kernels are the same as in

(4.44):

a2 (tSls 2 ) : CEf(t)h(sl)h(s 2 ) - ao(t)Eh(sl)h(s2 ) - al(t,sl)Eh(s2 )

rt  -) c
a1(t's2 )Eh(sE) a(t) h(c)h(sl)h(s)d

0
t

I [r (s2 a)a2 (t'sl' ) + rI(sI )a2(t's2,a)]d,

0

00

Note that this method does not succeed in solving the

optimal kernel equations recursively. Rather, t is fixed through-

out and the relevant operators are defined and inverted on

1r L22 A: a f, ..eeni_ 0 ,, t cr L ,r]), a cif-,erent time t', the entire
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process would be repeated. A recursive solution would use

a2(tsls 2) to construct a2(t+dtSs2).

An important problem is to determine conditions on f, h

and the signal process x(') such that a1 (t,s) and a2 (t,sPs 2)

are separable, for in this case the filter can be constructed with

stochastic differential equations (see theorem 2.3). This has not

yet been done and is fairly complicated due to the complex manner

in which Ef(t), Ef(t)h(s), etc. combine to produce the kernels

Fl and y of (4.51), the Fredholm equation for a2 .



- 109 -

CHAPTER 5 NONLINEA R FILTERINMG PROBLE MS WITH FINITE DIMENSICNAL

ESTIMATION ALGEBRAS

Suppose that a signal x(t) is defined by the stochastic

differential equation

dx(t) = f(x(t))dt + g(x(t))db(t)

x(O) - x0  (5.1)

and that it is observed via

dy(t) = h(x(t))dt + dw(t) (5.2)

As usual, b(t) and w(t) are assumed to be indepencent Brownian

motions. The filtering problem associated to (5.1) - (5.2) will

be completely solved if the conditional distribution, P(x(t)-A, 1 )

A z {Borel sets of state space., is known. A basic question is:

when can P(x(t)eA::1 ), as a measure, be characterized by a finite

set of statistics propagating recursively in time?

Recent progress on this issue has come from several

directions. First, V. Bene [l ] has proved the following result

by probabilistic methods. Suppose g = constant, h(x) :ix + 2, and

f is a global solution, 'i.e., defined on a!l of 7Z' of

S 2 = 2

Sax (5.3'

Then t-le conditional 3I s '.-u:icn -, < ' ien -,as :_ens":iv

wh'c can te -?xpresset :sr~'s a %~~ ~rte'-
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generated by Kalman-Bucy type filtering equations.

There is also a suitable generalization to the case of vector

signals and observations. This result covers the case treated by the

Kalman-Bucy theorem, (lemma 3.1), but it gives new examples of

finite dimensionally computable filters as well. We will refer to

the filtering problems treated in Benev' theorem as the "Senevs

examples".

Secondly Brockett and Clark C7 ], Mitter [351, and

Brockett [5 ,6 ] have suggested that Lie algebraic techniques

can be applied to the nonlinear filtering problem. They show hcw

to associate a Lie algebra of operators, the so-called estimation

algebra, with filtering models such as (5.1) and (5.2) and how the

Lie algebra structure bears upon the filtering solutions. In

particular, they suggest that when the estimation algebra is finite

dimensional it may be possible to compute conditional densities

finite-dimensionally.

In this chapter, we will pursue the imPlications of Lie

algebraic techniques for exact, finite dimensional calculation of

conditional densities. The first section will sketch the basic

ideas of this theory, especially those that concern generating

filter solutions from the estimation algebra structure. As part

of this exPosition, we will derive y 1i algebraic tac-niues the

conditional density for t.e prcoDern of estiatig a 3rownian
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motion in white noise. The solution to this problem is, of course,

well-known. We derive it here not for the end result but to demon-

strate and explore a Lie algebraic technique, called the Wei-Norman

method, (Wei and Norman [44]), that establishes the connection between

finite dim.estimation algebras and finite dim. filters. Further, a

rigorous derivation of a filtering solution directly from the algebraic

structure has not appeared in the literature for diffusion signals

and so we present one here. As another part of this treatment, we

will indicate connections between the Lie algebra strategy and the

theory of Lie algebra/Lie group representations on infinite dimensional

vector spaces (see also Brockett [6]). This will provide us insights

into the behavior of the filtering problems we consider. Also, Lie

algebraic theories of estimation are presently very incomplete and

we believe representation theory will ultimately offer much to their

study. Finally, we briefly develop the Benes examples from the Lie

algebraic viewpoint, a possibility first realized byMitter , who

suggested it to us, after Bene' results became known.

The remainder of the chapter is devoted to the search Fcr

new examples that may be solved Lie algebraically. Section 2 presents

a case to which the methods developed in this section do not apply,

and it explains why not. Section 3 contains the principal results

of the chapter. It first gives necessary conditions for a :ener!.

class of vector process models to have finite .imensioral es-i-_at3,n
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algebras, since these are the models that could possibly be solved

by the algebraic techniques. By applying this result, we are able

to list all possible problems with finite dimensional estimation

algebras for scalar process models. We then ask the question: for

which of these examples does the Wei-Norman, Lie algebra calculation

work? Our results are largely negative. Roughly speaking, they

indicate that only for the previously known examples coes the

calculation work.

5.1 Estimation Algebras and Filterinc

Our concern henceforth shall be with the filtering problem

stated in (5.1) - (5.2). Suppose that for all t, x(t) has a density

q(x,t). Then the conditional distribution of x(t) given F V has a

density

p(x,tlF) : Eo{Lt!Fy, x(t)-x}q(x,t) (53)
P~x~'Fy)= 0-__{t (5.Y3)

This is easily derived from the Kallianpur-Striebel formula. Call

the numerator of (5.3) p(x,t "y). p(x,tlr-l) captures the

x-dependence of p(x,trc), that is, it equals p(x,t, F1) up to

a random normalization factor, and it is, therefore, called the

unnormalized conditional density. o(x,t;F y ) is easier to w.crk

With tnan o(x,t';Y).
t.

Let b - r2 :
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Pardoux [4O]), the unnormalized conditional density p(x,t'Fy ) defined

in (5.3) satisfies the stochastic partial differential equation

dp(x,t) : L*p(x,t)dt + h(x)p(x,t)dy 15.4)

p(x,O) po(x) = initial density of x(O).

The Stratonovich and white noise forms of (5.4 ) are, respectively,

1 2dcp(x,t)=:L*- -h (x)]p(x,t)dt + h(x) p(x,t) y (5.5)

and
p(xt) L* -h2(x)2p(x,t)+h(x)p(x,t>(t) (5.6)

In (5.5), T denotes the Stratonovich differential. (5.6) is a formal

expression because : (t) does not exist except in a generalized

sense but it is useful in calculations. (Note: As in (5.4) -

(5.6), the y(.) dependence of p(x,tjF y ) will often be
t

suppressed for notational convenience.) All or any of these equations

will be referred to as Zakai's equation, (Zakai [47]). For the Lie

algebraic theory, it is necessary to work with (5.6), since

manipulations involving y(t) obey ordinary, rather than Ito

calculus, and the Lie algebra results to be adapted were developed

for deterministic problems with ordinary calculus.

The precise question that we will study here may now be

stated. When can p(x,t) be characterized by a finite number of

statistics propagating in time; in other words, when does p(x,t)

evolve on a finite dimensional manifold? The new approach to

filtering that we deal with here is to learn about :(;<,t; by

applying lie algebrLie grouo methods to akais ecuation. Le

MA.< seUa o . L -
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L0  L* h2(x) and let

{LoIh}LA denote the lie algebra of operations generated by L0  and

h using the bracket operation [A,B] = AB-BA. After Brockett [ 5

we call {Loh}LA the estimation algebra.

The fundamental idea is that {L0sh, carries information' LA

about the infinitesimal behavior of p(x,t). In particular, if

p(x,t) evolves on a finite dimensional manifold, then {L0,h}LA

ought to be finite dimensional as a consequence of the interplay

between Lie groups and Lie algebras, (Brockett r 5 1). Thus, we can

search for finite-dimensionally solvable filtering problems by looking

for examples in which dim{LO,h.LA . This will become clearer

in the subsequent discussion.

Example 1: (Brockett and Clark [7], Mitter C;5]).

Consider the simplest case covered by the Kalman-Bucy theorem

(see lemma 3.1).

x(t) = x0 + b(t)

dy(t) = x(t)dt + dw(t)

where x0  is a random variable independent of the orocesses t5(t)

and w(t). For (5.8), Zakai's equation is

p(x,t) = ( -x 2)p(x,t) y(t)xo(x,t)

(5 .9)

p(x,O) = density of x0

The correspcnding esima.tion algebra is easily seen tz be
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.Span dl 1T2

0 d2x

[AV x] =d
dx

CAo, d (5.10)
0 , X] = X

dX

We remark that A is solvable.*

Estimation Algebras and Solutions

In exploring the interaction between finite dimensional

estimation algebras and finite dimensionally computable p(x,t) we

must first confront the question: Given a finite-dim, estimation

algebra how does one integrate it to get a solution of (5.6), i.e.,

how does one determine p(x,t) from the algebra structure? This

problem relates naturally to the theory of integrating representations

of Lie algebras of unbounded operators on a Hilbert space to a

corresponding representation of a Lie group. We present some

*J

A lie algebra G is solvable if the series of ideals = .
G n -[G nl " terminates a: 0 for scme n <
cG is an ideal if W[G]



ideas of this theory to motivate the main calculational method,

and because, as mentioned above, we find it a useful source of

concepts for thinking about estimation algebras.

Let G be a finite-dim, lie algebra and G its associated

(simply connected) group. Let H be a complex Hilbert space.

Definition 5.1

A representation T of G on H is a map T from G

onto a set of linear operators on H with a common, dense, invar4ant

domain D such that [T(x),T(y)] = .,y]) for all x,y G. Like-

wise, a representation - of G on H is a map 7:G - L(H) =

bounded linear operators on H such that -(gl g2 ) = -'gi) (g 2)for

g1 'g 2 E G.

The problem of integrating a Lie algebra representation

to a group representation is as follows. Given a representa:icn 7

of G on H, when does there exist a oroup representation - .-"

such that ,(etx) = etT (x) . x E G' Here etT(x) is a group

d tT(x)generated by T(x) in the sense that T eT T(x)t I £D.

Suppose that xl , ' ,xd is a basis for G and that we have groups

etT(xi),i=l,,,,,d. A method for constructing - locally is to

define

1 x1  Xt -(x,) 11%t
(e I ... de e ) e I

Formal l, this can be made -c .ork, it t e oceratcr 4 en t-/
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tx. : .n tx.
e i adX .xie

holds for X. T(xj), 1 < j, j < d. (Flato, et al. 1.

(r) will be of chief importance.

The procedure recalls the Wei-Norman 144 7 technique for

solving differential equations. Let us develop this formally for

the above situation.

Suppose that *in H we want to solve the evolution

equation

do - 5.2
dd XP + u(t)X 2P (5.i2)

which is similar to Zakai's equation. ',We try a solution in -(G);

p(t) = e(t)xI ...ed(t)Xd e"O) (5.13)

For this p(t),

P( (t)Xlp
dt g 1

g1(t)Xl g2(t)X 2  gd t,,.

+g2(t)e Xze. .ep(+"•1( t) 1 xd t X

Sgd(t)e gl  ...Xde p(O) (5.14)

From ('.), for 1 < i, j < d

....... 3 =
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tX. d X.

e J: 7 c"(t)x e jm--Im m

and applying this repeatedly in (7),

d-o~t : Fl(g(t),(t))Xlp+..+Fd((t g(t)) )XdP (5.15)
dt Idd

for some non-linear functions Fi of g(t) :(gl(t)," _,gd(t)) and

(t). For p(t) to solve (5), Fi(g(t),g(t)) = 1,

Fz(g(t),g(t)) = u(t) and F.(g(t), '(t)) = 0 for j > 2. Solving

this set of equations (locally in t) for g(t) gives a local

solution of (5).

We will use this method to solve a filtering problem, but

first we present a few more remarks on Lie algebra/Lie group

representation theory. The heuristic ideas contained in (5.11) and

(I) have been worked into a rigorous theory by Nelson [37] and

Flato, et al. P13] for the situation in which G is represented

by skew-symmetric operators and - is required to be unitary (i.e.,

to take values in the space of unitary operators). Their results

involve heavy use of the notion of analytic vectors (Nelson [37]);

see appendix 2 for a definition. In their theory 7 will exist

if the algebra domain D contains a dense, invariant set of vectors

analytic for each element of a basis for T3). Conversely, if -

exists there is a common, dense set of analytic vectors for the whole

lie algebra (see Flato, at al. 1 7) Further implIcatons of the

theory are revealed in the following exampies,which play a role in
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the later discussion.

Example 2 Let Al  - ix, d ,-i and specify its domain as

S = rapidly decreasing functions

= f C c( ,)isupIx ;XX)l < a -Z
X

Al is then a representation of the so-called Heisenberg algebra on

L2(R) and it does generate a Lie group on L2(C). It is not

important here to present this group. However, it is interesting

to construct a domain of analytic vectors for A1  because this

involves the second order operator A0 = j() + 1 (ix) 2

1 d2  _ 1 2
2 77 -Tx , which arose in the estimation algebra A of example !.

Indeed, it turns out that A0 on L2 (R) has a discrete spectrum

{n} :I=' 'n < 0, lim Xn  - . Let &,n'n~lbe the corresponding
nin n -w n -0n'nl

eigenvectors, and define
N

0' : { 2i nN

D' is a dense invariant set of analytic vectors for A0  and A\2.

It is easily seen that D' is also a dense set of analytic

vectors for A of example 1.
d

Examole 3 Let \2  t i-ix, Tx, -i, be a representation of the

Heisenberg algetra on L2 (7+ ) with domain C0, ) in has

compact supoort in 7+1. In :his case, a unitary ,eo)resan-aon.a_ . 7
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generated by A does not exist. The reason is that i d_ will2 dx

not be essentially self-adjoint on C0(.) (see Appendix 2, and,

by a theorem of Nelson [37], this precludes -. Nelson [37] also

s d2  _ 1 2 = 12 1 2
shdx2 hat2(dx) + will not be essentially

self-adjoint on Co*(R + ) and that C;( R+) will not contain

a dense, invariant set of analytic vectors either. We shall observe

analogous behavior for the filtering problem studied in section 2.

We will now adapt the Wei-Norman method of (5.12) - (5.15)

to the solution of (5.9) in example 1. The first step is to
tX.

associate evolutions e to the elements X. of the estimation

algebra A. However, for A, the situation is considerably more

complicated than in the theory of representations by skew-symmetric

operators. It will no longer always be possible to generate

groups with the elements of A, or to insure that the evolutions are

bounded. Nevertheless, we proceed with the most natural definitions.

Define {e 0t>AO to be the semigroup associated to A0  by

solving in L2 (R) the equation

6(t) = Ao0U(t) u(O) L 2 2(IR)

It is well-known that

tA0
(e .)(x) = jG(x,y,t)p(y)dy t > 0 (5.16)

G(x,y,t6) ='-sih -1/2 -1 2.2, 2(2sinh) / expL- I \cotht)(x +y xy/sinntz
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Similary, define

(etX )(x) etX (x) *
td

(e dx )(x) = (x+t) t R

As in (5.13) let us try to solve (5.9) by the expression

=eg 1 (t)A0  g2(t)x g3 (t)L7  g4 (t)
p(x,t) = e e POIx (5.17)

where the gi(t) functions are to be determined. One may certainlyg2(t)x

raise objections to (5.17) -- the operator e is unbounded,

g1 (t) cannot take negative values -- but these will be cleared up

as we go along. The Wei-Norman method will allow the values of

gi(t) to be calculated if (1) holds for the elements of ,.

This requires, for example, that

tA 0  tA d tA
e x= (cosht)x e + (sinht,- e ? ,,.18)

tA 0 d = 0 tA.
e d (sinht)x e (cosht)TL e

and

tx d d etx - t etx (5.20)

The right-hand-sides of (5.18) and (5.19) are derived from

(I) by using the identities

Tad A -e1 X

'I-his solves u" .ut)uO,~ but n
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[ad A0]
2n+ l x d

which follow easily from the commutation relations (5.10).

Lemma 5.1

i) (5.20) holds for every C1 (1R)

(ii) Let V = ({(x) = x E LI(R)}. For every :

(e tA0 )(x) : G(x,y,t.,(y)dy

IR

exists and is infinitely differentiable on U(x,t)!t>_O:. Further

,m+n tAo ) ~
rn(e%(x) =r ~m+n

a (e G(x,y,t);(y)dy (5.21)3tm~x n  t 3tmxn

etA0) tA0 )

and for t > , (e )(x) (A0e ;)(x) (5.22)

(iii) (5.18) is true for every E V, (5.19) for every t : V

such that b' E 'I.

______then e2(t)x g3(t)
d- ga(t)

Remark If P0 e L (R) then e e e P0  V

and hence p(x,t),as given by the product of evolutions (5.17), is a

well-defined function in 0 (m).

Proof (i) is an elementary calculation.

(ii) can be derived easily using the explicit for cf i (x,y,.

The principal observation to make in coing the calculaticns is n-at
2

For t > 3, G(x,y,t) will decay like e ' as / - for scme positive i .



- 123 -

(iii) The following calculation proves (5.18)

tA )  =
(e X6)(z) = JG(z,y,t)yo(y)dy

- G(xYt) +(cotht)x G(x,y,t)x ]

sinht p(y)dy

d tA0 tA0
: (sinht d (z) + (cosht)(xe P ) .

To get, (5.19) integrate by parts
tAo0d

x)(z) G(z,y,t)- ;(y)dy = - [dy Gz,y,t)];(y)dy

etA 1 , tA0

= (cotht)(e 0X)(z) - sI txe t ,(z)

tA0  0
: sinht (xe O.)(z) + cosht e A)(z).

To obtain the last equality, we used (4.18).

Let p(x,t) be as in (5.17). We will now solve for the

functions g.(t) i =1,2,3,4. From (5.17)

_ _g1(t)Ao g (t x g t>. 7  - ,

, (t)A p ,,(t) e A e a e p
1 01

* .3(t) e e "e e Pn

t& 4

L%7
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By applying (5.13) - (5.20), one derives

*o = ItAp'~t x

3t gpt)tM'p(t)t)P4 " + F3(g(t)'g(t)) fx t

+ F(g(t),g(t))p(X'.t) 1-(5.24)

with F~s given below in (5.25). But if p(x,t) is to solve (5.9)

with p(x,O) = p 0(x) we must require

g1(t) =

y(t)z Fjg(t),§(t)) = 2(t )cosh gl(t) + 93(t )sinh g,(t) (5.25)

0 = F 3(g(t),g(t)) = 92(t) sinh g,(t) + 3(t) cosh g,(t)

0 = F4(g(t),g(t)) = Y4 t) - 3 (t) 92(t)

gi(t) = 0 i 1,-4

(5.25) may be easily solved. The result, written in terms of the

dy(t) notation rather than Y(t), is
t

92(t) -jcash(s) dy(s)

0

t

g3(t) f sinh(s) dy(s) (5.26)

0

t tj

94(t) ={(sinhs)(cashs)ds 9 2(s) (sinhs)dy(s).
0 0

Finally, by substituting these expressions in (5.17) and usinc tne
tA0

explicit formn of t he kernel G(x,y,,-) of e w ~e ~r



- 125 -

S-1 -I2
p(x,t) = jk(z,:) e PO(t)[x-m(t)

p(t) = tanht

m(t) = z + sinh dy(s)cosht cosht
0

Let p(xt;z) denote the integrand of (5.27) exclusive of p0(z).

p(x,t;z) may be interpreted as the unnormalized conditional density

of x(t) for the process x(t) starting at x(O) = z. It is clear that

the normalized version of p(x,t;z) is a Gaussian density with mean

m(t) and covariance p(t), and this agrees with the Kalman-Bucy

solution of the problem. Though these calculations used the

(t) formalism, they can be carried out, with some added

computational complexity, using the rigorous Ito calculus. Therefore,

we have redertved the Kalman filter.

Remark In presenting the Wei-Norman technique, it was indicated that

in general it only gives solutions local in t. However, theorem 5.1

provides a solution for all t > 0. This happens because .he

estimation algebra A is solvable (see example 1). 4iei ano Norman L41
gi (t)X

show that for solvable matrix Lie algebras, if the operators e

are placed in the correct order in (5.13), global solutions can be

found. Without further elaboration, we observe that this resul:
go(t)A0 -

extends to the present case and motiva.es putting e first

in (5.17).

Lat.' .Moo
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The Bene Example

The Lie algebra strategy is also able to recover the theorem

of V. Benev quoted above. Consider the scalar case

dx(t) = f(x(t))dt + db(t)

dy(t) = x(t)dt + dw(t)

f' + f2 =ax2 + bx + c (5.29)

The Zakai equation is then

3t - v1 2 fx) - x2,p(xt) + y(t)xP 5.20)3t OX 2 -

.l .1 ; 2 is 1 2 ~The estimation alGebra -1 "2 1 x

X~~ ;22 x ~ X)- (:~LA 's acain

1 ;2 3 ~x 1 2

finite dimensional. Indeed, if L -= x
0 -9 x2

A = Span'LOJxI -,

and its commutation relations are

:rLOI x ] L
dx

LQX4dx2
Lod - : (+1 b_ (.1

rd - f,x] a

,dx

These calculations are valid without restriction on the coe4 icents

a, b, and c. Hcwever, -or general a, ', c, 1.5.29. may c: have a

global solution, in whicv case 5.31, is to :e inze-:rete : n nc.in

- t
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whose domains are contained in the region where - is difined. 4e

will explore when (5.29) has global solutions in section 5.3.

We could now try to solve the Zakai equation (5.30) by

p(x,t) = (eg  0 e 2(t)x eg3(t)dx- f e 94  (xt)

However, it is simpler to first rewrite Zakai's equation via

a simple transformation thit compares to the gauge transfornations

of quantum physics. Let z -- R and define

x

F(x) = j f(s)ds

If q(x,t) = e-F(x)p(x,t), a substitution in ',5.30) demonstrates

that

C! - [(a+l)x 2+bxc]]q + y(t)xq (5.32)

3x

p5.32) is similar to the 7akai equation for noe

Brownian si;nai exampie. Although 15.3, is not the Zakai

equation for a filtering problem, let us define its Lie algebra o4
I O - 1 i) 1 2operators as .x = {LX}LA L = - [(al)x+bxc.

Ox

"I is iscmorpnic to .7 by the ism,-orphism - L3 1 x -x,

d d - . It is trivial to observe &'a
dx dlx'...

.2
0 2 2 .T ,

* = - ~ a -
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Suppose that f is globally defined so that, in order to -Find

p(x,t), we seek a solution q(x,t) of (5.32) that is defined for all

x e1R. Suppose further that (a+1) > 0. We can then solve (5.32)

by the method

d

q(x,t) = (e 0O e 2(x e 3(')Q e 9(t) qo)(x)

The g.(t) functions will be slightly different from t.nose calculazec

for example 1 because of the di"fferent commutation relations between
- d 1 x)
AosTxand I. The resulting solution p(x,t) =e (Xq(x,t) is

precisely that, obtained by Bene's. 'whether the same met-hod can be

made to work for the case in which f is not globally defined Is

an issue we will take up in the remaining sections.

5.2 Estimation of Absorbed Brownian Xotion

This secticn counter~oints the successes of 5..1 by provilonc

an example in which the estimation algebra has 71inite dimension, but

in which the Wei-Nor-nan calculation does not work. The signal In

this example is a Brownian motion absorbed at a boundary, and the

associated filtering problem is very similar, operator-wise, to the

problemns treated in 5.1. But it turns out that the Wei-Nor-m-an

method cannot proceed tecause the izdentity ",) -:ails --or :-ne

estimation alcebra cperato-rs. The phnemcrnoiy -, thi ~I l.re is

iscussec 4n nooe 3 'nrce-~~ ne a'na~n :etras --,r

tne tnn~i: e oces )r oc Y cr<. -r '-7 e C:) '. e s a: -i



- 129 -

crucial information is revealed by the algebra's behavior on the

eigenvectors of the partial differential operator L = L* - h2

(see 5.6) of Zakai's equation and by the interaction between operators

and boundary conditions. The domain structures of the estimation

algebras are also more closely identified. An important role is

played by the existence or non-existence of a dense invariant domain

of analytic vectors associated with the eigenvalues of LO.

Let b(t) be a Brownian motion, let x0 be a r.v. with

density po(x) such that p0 (x) : O,x < 0 and such that x0  is

independent of b(t), and let T = inf{tjx 0 +b(t) 
= 0}. Consider the

problem

x(t) = (x0+b(t)) 1 t<T- (5.33)

dy(t) = x(t)dt + dw(t)

x(t) is an absorbed Brownian motion with random initial value. The

distribution will now have two parts; an atom Qo(t) = PaX(t)O,

and a measure Q(A,t) = Pa{x(t)zA-:0}) (for AC [0 -)) with density

q(x,t). Accordingly, the unnormalized conditional density of x(t)

will have two parts:

Pa(t) E : Elxt:oLt!FY

and

P(A,t) = E OIxL

P(A,t) will have a density
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4.t
p (x, t) q q(x t) E0{1t< ex p x] x+b s)dy s)

0

t
(x0+b(s))

2ds] F, x(t) x}. (5.34)
2 j
.0

Again these statements are all consequences of the Kallianpur-Striebel

formula. Assuming differentiability, p(x,t) will satisfy the

Zakai equation

ap(x,t)t 2 1 - x2)p(x,t) + 5(t)xp(x,t) 5.35)

p(0,t) = 0 t > 0

p(x,O) = Po(X)

(5.35) may be derived formally as follows. Let

V :f ) CR) has finite limit at

Let (T(t)f)(x) be the semigroup on V,

generated by absorbed Brownian motion. The generator of Tt) is

I d 2  -2
1--, with domain D .f " CC V (O):o (see, e.

dx
Lamperti ['97). -or f r, define

, 0 Pa p t ,,

1 , ,

k- -------.



By aplying the stochnastic di-"erential equations o 7 -:eing

(Fujisaki, Kallianpur, Kunita and <uni-a r,,, .one may terliie

da()= C (Id )dt (.7
dx

for f e D. By substituting (5.36) in (5.37) and integr-ating

(I f) by parts, one finds

f(O)dPa( (t) + f(x) L L~~d

2 2 X

+ fx) -7 v px ,t x

Since this must hold for all

dP It)

P(C,t) 0

-he wnim2 nC'3a ve rs3on 47s rcee,: .~
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in (5.35), let A, rather than A0, denote

3x2 -f x2, to emphasize that the functions A acts on are now

defined only on :+. The estimation algebra is

A' = {A, x, d , 11dx

which, but for the fact that the domain of functions is different,

is the same as .A in example , o. secticn 5.]. Again, one micht hove

that p(x,t) is solved by

gl(t)A g2txg()xg (t )

p(x,t) = (e e 92txe 91( xe 94 p0)(x), (5.39)

once the various operators are properly defined. However, the

crucial identity (I) will fail in this case. The problem is the

boundary condition p(0,t) = 0. Because of this condition,etA will
tA

not be the same as e of the previous section. Rather, to

meet this condition in (5.39), we must require. (er A)(O) = 0 for

all relevant p. A simple reflection argument on the kernel G(x,y,t)tA0
of e (see 5.16) yields

(etA )(x) I (X,y,t)?(y)dy

(5.40)

1 2 xv 2,- __--

(x,y7) : vsinht axPL- - t y 1 s inn( "

Tf we try to prove tre aralcgue of ';.51) ith r: acaenc

SJi
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then get

tA d t
(e x,)(z) : cosht(xe t)(z) + sinht(detA D)(z)

22

+ ---- -1/2 cotht(z 2+y2 ) e-zy/sinht(y)dy.sinht
0

The last term will not be identically zero unless ; is, and hence

(I) fails. The Lie algebraic calculation of section 1 to solve

Zakai's equation will then not work.

Discussion

In the above calculations, we verified or disproved the
tA tA0

crucial identity (1) by using the explicit 
formulae for e

tA and e

It is desirable to explain the results at a more fundamental, operator-

theoretic level, i.e., to understand how the closely related

estimation algebras ,A and A' involve such widely vari!an behavior.

Our first step is to reprove the identities (5.18) and (5.19)

of section 5.1 by much more fundamental methods. This proof will not

be quite as strong as that of lemma 5.1 since it will apply only to

restricted set of functions. Recall from example 2 of section 5. , .at

D' = :finite linear combinations of ei9envec:zrs}

is a dense, invariant dcmain for A. Let L ' be an eieneo=z'

- r-
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with eigenvalue ;. From the comnutation relations (5.10)

d [Ox- A (5.41)dd A o 'X ] : A oX 'p - xX ( .41

d d dx = [AO, X, : A0 rp ax . (5.42)

By adding (5.40) and (5.41) we derive

d + x) = A (I + x)- + x),
dx ddx x

Since D' is invariant under L and x, (d + x):, 0' also. Thusdx d

we conclude that (L + x),p is an eigenvector of A0  with eigenvalue

x + 1. A similar argument shows that L - x is an eigenvector with
dx

eigenvalue - I. The following calculation now proves (5.18) for

: . Observe first that eA e t

tA3 d t" l dx

e ( + x),, = e ( +l) (L + x)., etc. Then

tA0  tAl dd

e x : e t (-+ x),- (L.- x)t]

I e t(x+l) d 1 e'( l) d"x - 12 dx

: cosht x e sinht ex
dx

cosht x etA s-,nnt -.
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By linearity, (5.43) extends to all the elements of D'. Thus, the

invariance of the domain 0', which is also a domain of vectors

analytic for A\, implies identity (I) after a direct calculation using

little more than the commutation relations. The development here is

reminiscent of the quantum field theory of the harmonic oscillation

or the construction of the free Boson field. This is not accicental,

because deep connections between quantum field theory and filtering

exist. (This was discovered and treated by Mitter 135].)

These nice domain and eigenvector properties of the Brownian

motion signal case do not extend to the absorbed Brownian motion

problem, despite the isomorphism between A and A'. The root cause

is the boundary condition p(O,t) = 0, and the fact that this condition
is not invariant under d_._ Indeed, we can see intuitively thatdx

etAxD # cosht x etA + sinht d etA. (5.44)

tAd tA

because, for general * (e tA (0) = 0 and sinht(L et ,)(x) 4 0.
dx

However, the fact that (I) fails is not apparent

directly from the structure of A' because the boundary condition makes

no contribution to the definition of . We can rectify this

situation by more careful attention to the issue of operator dcmains.

It is useful to think of '' as a representatio o a i l cera

on a function s:ace /, ant -n thi4s n scujss"zn s

.Y h s SCS : , iL :,= = = -
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set V = 2(S), S = state space. Recall that a Lie algebra

representation required not only an algebra of operators, but also

a dense, common, invariant domain on which to define them, because

an unbounded operator is not fully specified until its domain is

given. Thus it is actually inadequate to discuss estimation algebras

without considering domains, and thus we attempt the more rigorous

formulation

Definition 5.2 Let D c. V be a common, dense, invariant domain

of L0 and h. Then {LOh}LAD denotes the lie algebra of operators

generated by L0/D and h/D and defined on the domain D.

Remark Domain invariance insures that all brackets [A,B] of

elements of the lie algebra are again well-defined operators on D.

What is the correct domain D to associate to A' when

trying to solve (5.35) by the Wei-Norman product series (5.39)? Up to

now, the discussion of operators in A' has been formal since we did

not specify domains. However, we did find that A, in conjunction

with the boundary condition p(O,t) = 0, gives rise to the semi-

group etA defined in (5.40). The proper domain D' for A is

tAthen that for which AD' is the infinitesimal generator of e

For clarity, denote this infinitesmal generator by A . It is

easily seen that
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D(A) = { L2 IR+) ( 3 2- e (L2(+ )4(O) 0)
ax

Henceforth, we will discuss A instead of the less well-defined A.

Eigenvectors of A will again be important, and domain considerations

enter into their definition; p is an eigenvector of A if

I 2d 1 2 = for some xand if (o) = 0.

dx

Now, in analogy with Lie algebra representation theory,

we want the domain D of A' to be such that AID generates

etA also, (in the sense that etA is the unique semi.group1 [tA _ -

s.t. lim 1 e ] = Aq, D € 0). At the very least this

requires that 0 CD(A). Otherwise AID will generate a different

semigroup or will have extensions generating different semigroups.

For arbitrary D, of course, it may not be possible to associate any

semigroup to AID.

However, the next theorem will show that the requirement

D C-D(A) is also problematic and it will lead us to a deeper

characterization of why the Wei-Nor-nan method fails.

2+
Theorem 5.2 Let 0 C D(.) be a dense (in L (P )) invariant

domain for ". Then D does not contain any eigenvectors of

nor does it contain 3 c<.ze, invariant tc-ain o' analytic vEctors.
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Remark It can be shown that AID has many different self-adjoint,

negative extensions. Thus there will exist many other semigroups

U(t) such that

1lim f [U(t) -t] = At, V E D
t o

We conclude that D does not have the structure necessary for

integrating the elements of A'.

Proof If p is an eigenvector of A it is clear that (O) = 0 and

'(O) $ 0, for otherwise the unique solution of 2" - 1 x2  - 0

= eigenvalue) is -p 0 . However, if D C D( ) is invariant under

A', it is at least invariant under d Thus if 0 D (n) DCD(A)

Vn which implies (n)(0) = O, Vn. Thus

D C- D(A) n{sjc C"'(I+), t (n)(0) = 0, Vn)

It is immediately clear that D contains no eigenvectors of A.

Consider a representation of the Heisenberg algebra ,,,- -x, d

on D. As in example 3 of section 5.1, id- is not essentially
dx

self-adjoint on D and hence, by the theorem of Nelson [37] (see

Appendix 2) A" on 0 does not integrate to a unitary group and

hence does not possess a dense invariant domain of analytic vectors

in D. An analytic vector for ix is an analytic vector for x

and vice versa, so D does not contain such a domain for A' either.

In short, the eienvectorsf A, ;rnoh in the Bro,:nian

V ;.
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signal example were the source of a dense, invariant domain of

analytic vectors, are no longer invariant under the estimation

algebra. Thus if .p is an eigenvector of A, ADu = X, it is
d d

no longer true that (- +x)-, and (- -x>), are eigenvectors of A

and hence the proof of (I) on eigenvectors by commutazion reiations

also fails for the absorbed Brownian motion case.

In summary, when a dense invariant domain of analytic

vectors, in these cases provided by the eigenvectors of A or

A0, fails to exist in the domain of the estimation algebra, the

Uie algebraic method of solving Zakai's equation does not work. We

shall see this same behavior repeated in examples presented in the

next section. It is our conjecture that the existence of analytic

vectors for the domain of an estimation algebra will be a necessary

condition that a filtering problem with finite-dim, estimation

algebra also have a finite dimensionally computable conditional

density. Further work on this has not been done.

5.3 Finite Dimensional Estimation Alaebras.

In this section we seek to identify those filtering

problems that possess finite-dimensional estimation algebras. 1,Je wii'

restrict our attention to the class of models

dx(t) + S(< t ' It}'/

-

db.

-5.1

, -. -
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and we will assume that x(t) is an . -valued process, y('t is

RP-vaiued, b(t) is an m-dimensional Brownian motion, m > n and S

is a constant nxm matrix of full rank. Additionally, we will suppose

that x(t) evolves in an open, connected set U C 2n and that

f, h e O*(U). As the estimation algebra domain, we will always take

C*(U) e { £ C'(U)Isupp6 is compact',

a choice avoiding boundary conditions, but imposing no loss of

generality to estimation algebra calculations, since the algebra

cperators should be defined on a sufficiently well-behaved and comolete

domain. The first result will present a necessary condition that

(5.45) has a finite-dim, estimation algebra. We then use this

condition to list all possible finite-dim, examples in the scalar

version of (5.45), n = m = p = 1. Finally we discuss in which of

the scalar possibilities, Zakai's equation can be solved by the

method of section 5.1.

Conditions for Finite Dimensionality

The Zakai equation for (5.45) is

L p~x ~tt ht :Lop(x't) + (7 hi(x yi(t))p(x 't)

A..- --. x) - h2x, .
- 2i,j=l 2 2
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Consequently, the estimation algebra is defined to be

A = {LOhl,"'hp}LAC(U )

The following lemma, which incorporates an important Lie algebra

calculation, is needed in the first theorem.

Lemma 5.2 Let g E C=(U). Then Vk

[ad Lokg= Dkg(Azl .. A z ) 95.47)

lk =l I k

+ terms with lower order differential operators

In (5.47) Dkg(''-) denotes the kth differential of g considered

as a symmetric, k-linear function, and A denotes the zth column

of A.

Proof For k = 1, a direct computation will show

[Lo'g]= 22- Ai 3__+ C! tr (A-D2g) - 7g.f]
9x ii ax 2

for 0 e c (U). In the last term,

D2g = CD2g(eek)] ,

ek = k th standard basis vector

and
vg = (-T ,.,!Xn).

V - g
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For k > 1, t e proof Proceeds by induction. e e:ai ls

not be presented.

The next theorem gives the necessary condition for '.ne

model (5.45).

Theorem 5.3 If dim A < c, h1(X),.'.,hp(x) must be polynomials

of degree < 2. More generally, if (x) £ :(i is in x. (x,

must be a polynomial of degree _ 2.

is c l a n c ,
Proof Fix g(x). The sequence *Lad L 0]g k=0

A and hence cannot nave operators of arbitrarily high order.

Because of lerna 5.4, this implies that, for some k,

k0
okg(A z,...,A.) : 0

for all z <.. < n. Since A is non-sincular,

this means that

.

3xz  •. Xzn

for all z , . z k  < Zl,-.., k  < n. Thus g is polynomial of

degree k - i.

The sequence of jnctzons :an , :,
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aO(x) = g(x)

al(x) = [[Lola(X)], a x)7

an (x) = [ELQ, anl(x)], an-i(x)]

must also be in .x. Another tedious calculation shows t.hat

an(X) = 7a_ 1 (x) A 7 Tann n- -i(x)

If g(x) is a polynomial, then clearly {an(x)},n= is a sequence of

polynomials. We claim that

deg an (x) = 2 deg an-l(x) - 2 (5.48)

To prove this, observe .4 > 0. Hence, there exists a ,natrix S

such that

SAS = diag >,,.. .,X n ] x.,  0 i = 1, . n

so that
an(x) ,an-(x S-I sAsT(SI )Ta()

L (7an-)

i=l

3. t 7a o e a ,ec:r 3- :c .'cmi- , s e nes- :e r e

r Mn 't ni le ,, :e- 3 a.. . ,

1-I IIII



- 143 -

Now suppose de gf(x)] > 2. (5.48) will then imply that the sequence

deg an(,() will increase without bound and so admit polyncmials of

arbitrarily high order into A. But this cannot happen

dim A < -. Therefore deg g(x) < 2.

In the scalar case, theorem 5.3 may be used to impose

conditions on the drift f(x) and so to obzain n.a.s.c.'s -For

finite-dimensional ity.

Theorem 5.4 Let n = m = p = 1, G 1 I. Then dim < iff

(i) h(x) = ax

(5 .49)
f+z2 2
+2 =ax + bx+c

(ii) h(x) ax 2 + -x + y, a r 0, and

2 2 h2 + a(2ax+s) 2 b +

(2x+s) 2

or

+ f2  h2  ax2  bx+c ( ""

Proof Assume dim A < - and h(x) ax + . The function

rl(x) = [Lo,[Loh]]

x + 1 , + , '

is in A. Hence by theorem 2,

r .$x) = ex2  ;',- 2,

, i :



for some constants, e, a, and 7. us

and hence 1 2 l ~ - ~ , -(.2

+ _ ex 34 X x+c(.2

Li k ewi se

r(x = [LLO,IL 0,rl(xflj - 4eLO.

2(2x)

= 2e(2ax+3-) 2 2e1c'-f 7

(2ex+a-4- ,2

is quadratic. But, by substituting (5.52) int!.o (5.53) we find that

271 3. ''f2ir2(x) contains the term e [f-~ . Hence e = 0. Thus is.

quadratic. Conversely, i-f f(x) satisfies (5.52) ,qi-h e 0 ,

A =Span ~' x, d
- d, 7'x

which is finite-dimensicnal.

Next suppose that h(x> ax2  -x a~' ~ . ain

r(x) =[LQELolh]] - 4aL 0

~2, 1 2~~~A~

s a -uadrar- - -:ncz:,cn X' ~e- = -. e see ta
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satisfies

11z -- ' - 2 _h - (2 x--)hh' '(x) (5.54)
2az + 1 2ax+3)z' 2-

The general solution z of this equation is

z(x) (x) + (X) + ( 2ax+sl 2

where Ql(x) is another quadratic function solvinc

2aQ 1 + - 2ax+ )Q I Q(x)

and x(2ax+gs- is a solution of the homogeneous part of (5.54).

21f Q,(x) F ,(2ax+) + v, then by taking an appropriate linear

combination of Q(x) and n(x) we may show that x E_ .. It then

turns out that

[L0 L[C,x]] = Qi(x) - 2,k(2ax+2) 3

is in . . But this must be quadratic and hence X : 0.

Conversely if Ql(x) = , +-- " then x may be non-zero

and the estimation algebra is

: Span '  x - 
- -

+" : 2 2 h 2a X -2x -xc anc i. isnct o tne Acove

smecial form
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2 d d

. Span {L0 ,x
2 x , xC x - .

This completes the proof.

Remark Case (i) compares to the Benes r 1] examples; a form of

(ii) appears in Brockett [ 6].

By a simple transformation, we may extend this result to the

filtering model

dz(t) =f(x(t))dt + g(z(t))db(t)
(5.56)

dy(t) = h(z(t))dt + dw(t),

and h,f,g eC (U), U is an open interval of R,and g(z) > 0 for

z E U. Consider the differential equation

. '(X) = g(e(x)) 0() z U.

Let I denote the maximal interval about x = 0 on which the

solution e(x) exists. A maps T onto U, is infinitely

differentiable on 1, and is invertible. These statements are easily

demonstrated from differential equation theory. Next let

1 1 1f() 1 [f(e(x)) - 1(x

and supPose

: y appiying '"t)'s or~e ]e 'incs ",a' _ . = = "
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dz(t) = f(z(t))dt + g(z(t)db(t)

Hence, (5.56) may be replaced by:

dx(t) = f(x(t))dt + db(t) (5.57)

dy(t) = h(a(x(t)))dt + dw(t).

The Lie algebra analysis can now be carried out on (5.57). The

estimation algebra is A : 2( - f(z) 2

,122 2

that of (5.57) is A2 = - 2 - ax - ) he±;LA"

If i:A2 - 1  is defined by

(iB],)(z) B, oi(x)

x=agl (Z)

one sees easily that i is an isomorphism of and A2. Hence, we

derive.

Theorem 5.5 dim < iff dim Ai2 < .

Theorem 5.5 says - a- any :e diensiona2 es:me-a:i-n

, L M..
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algebra for the model (5.56) with g(z) > 0 can be reduced by state

space diffeomorphism to one of the cases in theorem 5.4.

Solution of Zakai's Equation

Which cases among those singled out in theorem 2, allow

a solution of the filtering problem via the method of section 5. ?

To answer this, it is first important to characterize the drifts f

solving the equations (5.49) - (5.51). It turns out that f may

explode for finite x, that is, the maximal interval

U = (ro,r 1 ) on which f can be defined may be only bounded or

semi-infinite because f(x) - as x bounded endpoint of U.

Despite this a signal solving

dx(t) f(x(t)) dt + db(t)

x(O) U (5.58)

will still exist, but, in general only up to a stopping time, :,

at which it attains a boundary point of U, (Gihman and Skorohod

C 17]). The theory of diffusions on bounded intervals must now

be applied to proceed further. It says that to specify x(t)

for t > :, one must impose conditions that tell how the process

behaves at the boundary, i.e., whether it is absorbed, relec:ed,

terminated, or scme combination c! these three. ,Alays, when

x(t) s U, it is assumed ;o solve .". The tneory aso
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indicates that even if x(t) does not hit the boundary, so that

x(t) can be defined as a solution of (5.58) without additional

conditions, different process behavior near the boundaries can

occur. Whether or not x(t) attains the boundary and how it acts

near a boundary depends on the nature of f.

To study f and (5.58) we state some preliminary results

from diffusion theory. In our definitions and statements we follow

the exposition of Mandl £27]; the original reference is Feller

£12]. Let f e C (U), U=(r 0 ,r ) and consider the operator

1 d2  d

dx

Let r E (r0,r,) and define

rX

c(x) 2 f(s)ds

u(x) r dy e-  r dz ec(z)

Jr

' y ec(y) dze -

(x : i y e i.
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Definition 5. 3 For the operator 3,

The boundary point rn is
1

(a) an inaccessible, natural boundary if ; (r )=-, d(ri)'=

(b) an inaccessible, entrance boundary if .( vi ~ <

(c) an accessible, exit boundary if (r) ,v.) .

(d) an accessible, regular boundary if . r,

Let C():= -p(x) xzUj - is continuous, Ilim -D(x) exists and is finite,
x-ri

i ov

and consider the differential operation 6

on

0 ( B) CCUB C"U

Lemma 5.3

i) If the boundaries of U are inaccessib~le th1,en 3 on 2(B) ;enera--es

a unique Markov sernigroup on C(7)

ii) Suppose B has an accessible boundary. Define 3'('0) as the set

of Ep O (3) s.t. at a regular boundary r.

C pitr)(l 1 -~lr (x)*x)-

x-r,

-. > Oi .,-
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and at an exi- boundarv , = '"(ri -3,'r), :-> " >.

Then 3 on 'D"(3) will generate a MIarko v serigr-,x :n C '-'

Proof. Mandl E27 .

Remark. The boundary conditions in lemma 5.5 ii) are called 2ocal.

More general, "lateral" conditions,corres~cnoin: to having t.e process

jumo to a point inside U, are possibIe, but for, such sinals ai's

equation no longer holds.

For a domain with inaccessible bountaries, let x:;x.0 ... cz.

the solution of (5.58) with x(O;x) x U. Then B on 7(3

generates (T(t)g)(x0 ) = Eg(x(t;x 0) for g C). Construction cf

Markov processes that correspond to the semigroup gEnera:ed in -'

case of accessible boundaries with local boundary conditions mav :e

found in Sihman and S< rchod r 7-

We shall now anal,/Z he solutions Of , .4W-,,. .,

terms of tnis tnecr'. Siven a functior f, Ie = aX: P

vice-v-ersa, given ',,, le- f c/v. Then satisfies '5.4 , - .7

(5.51) respectiviely, if and only if v satisfies

4E 2:r.< -- ,

- - - - ,. -
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" -h -ax Zx ).

respec:ively. Clearly, singularities of F wiII arise a" zeroes o-

v. The situation is summarized in the following lemma. Note a

special attention must be given to (5.60) because of the singularity

of the coefficient at x0 = 2

Lemmna 5 .

i) Suppose that f is a solution of (5.13) or 5.5i) ant :ha f

beccmes singular at. x0. Then fx) = - C() as x-x. 7he same

holds true if f solves (5.50) and x0 2a'

ii) if f is a solution (5.50) and c > - hen f can ave .

solution on an interval with endpoint x0 : - and

f 'x) -(lX ,

where at - .

ii1) Zf c < T is not defined on an interval ii:.r enc:c ,: x,

or containing A.

.r ' K . ,. . ,hen v e , r : e r ' -

-u-r
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v' (x0)+vl (x0) (x-x0+-
f(x) - I

v'(x )(x-.x )+--/"[ )(X-X ...

- 1 + o(T) x- . .
x-x 0

(ii) It suffices to consider the case = 0 and f = , for which

x0 = 0, and

V" = (-h2 + ax2 + b + C-)v
x

If c > - , ±(-1) : c has two solutions < < and v has

series solutions near zero

v(x) = x anx n , a0  0
n:O

v2(x) = x anx n  c 0

For each solution

S: + O(') , A--+ C
xi 

,

' = - , , e solutlons v ire cenera; / - -e I:--,
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n
Vl(x) : x1"2  Z a x

n=o

v 2(x): (Zn X) xI1 / 2 ( a nx n ) + xI / 2  n b xn

2 x
4 1

(iii) If c < - -r, the solutions v1  and v2 are still valid, but

now aI and a2 are complex

I /j4c+l{
l - 2

Thus since

X/4c+i zn x

any real solution v will have an infinite number of zeroes in any

neighborhood of zero. Since each of these zeroes will correspond to

a singularity of f, f cannot be we',l-defined in an interval

containing C or with ) as an endpoint.
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From lemma 5.4 we can derive

Lemma 5.

Let f be a solution of any of the equations (5.49) -

(5.51) on U = (ro,rl). If ri  is finite and lir 'f() < r
x-r.

is regular. If ri is finite and f(x) a + I0(1) (x-r r is

an entrance boundary if a > 1/2, a regular boundary if a e(-1/2,1/2),

and an exit boundary of a < - 1/2. If ri  is infinite (* or

it is natural.

Proof For the finite boundaries, calculate (x) and .(x) and

apply definition 5.3. To prove that an infinite boundary is natural

it is necessary to know how f behaves at that boundary. it will be

shown later that f can exist in a semi-infinite or infinite domain

only if it solves (5.49). Suppose for instance that rI = + -. It

turns out that

f' + f ax2 + bx + c

whether either a > 0 or a = C, b > 0, or a = 0, b = 0, c > 0.

In any of these cases V(x) can grow at most like x as x-- and

from this one can show limu(x) : +- lim v(x)

Let us take up the ques-ion raised in the 7ast rcof;

which equations of (5.49)-(5.51) have solutions on ,WOich kints of

doma ins?
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Iemma -. 5

Suppose f satisfies (5.50), (5.51) or f', 2 2ax - -

and either a<O, or a=b=O, c<O. Tf f is defined on j=(r r and has

no singularities in U, then U must be bounded. 7f £ satisfies

+f 2=ax +bx+c and ri is infinite, lir ax 2+bxc > 0.
x-ri

Proof. The proof applies the S:urm-Louvi'Ie comparison theorem

(see, e.g. Coddington and Levinson [ 3 "',. Suppose satisfies
rx

(5.51). Then v = exp F(x) satisfies
J r

v" + (h2-ax2-bx-c) v=O

Since h is quadratic, for !x! large enough

h2(x) - ax - bx -c > 1.

Hence, by the Sturm-Liouviilie comparison theorm v must nave a zero,

between any two successive zeroes of any solution oF

e" + e:0.

Since = c.cosx + c sinx we see tat v must have a zero n ari

inbounded domain. Thus ' :an be defined q4hoj t-e

onty in unbounded domains. The ther s tatements are rsved ra Ioou:l .

-7^ e r .t res; g% e.s .r -a -' E STe a S .

" " n ', - -a -c in:a ' 3r r s im , 'rom in _- , n.
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or (5.3'.) mill be natural and (2) that finite boundaries wi always

be ecountered, except possibly, with (5.9). It will turn out that

these non-natural boundaries will generate non-trivial boundary

conditions for Zakai's equation. The general implication is then that,

just as in the absorbed Brownian motion example, these boundary

conditions will interfere with the attempt to apply Lie algebraic

techniques. :t would then follow that for scalar-signal models

of the type AM.53) only the known examples of Bene can be treated

by the method of section 5.1.

it is difficult to prove this statement in such sweeping

generality. First, there is a problem of formulation. if x(t)

sol yes •

on a finite domain 'J with regular accessible boundaries, it is no

longer possible to characterize the conditional distribution just by

a jensity P(xt) on U; one must also consider the conditional mass

distributions ?t) = : J (t) It F0. or general localrit i u i n ri !xr-= - --'-t

boundary conditions, we must solve a system of equations for the triple

(r(t), P(xt), ? t)), and Lie algebra techniques, if any, must b

aoolied to this system. Thus in the anal ysis of Lie algebraic

tcnnriues tz follow 4e Aiil avoit the a=0essi be bouncary :ase.
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Remark. For certain boundary conditions in the regular accessinle

case the system (P ) p(x,t), P (t)) degenerates into just a
r0 r1

density equation with boundary condition; if ri  is pure reflecting,

i.e., ; D'(B) only if -L txr= 0, then P ()=O and

11 x r i~+*-~f(.:p(;t\ 0, 14t; if ri is pure absorbing, i.e., D(B

iff Bt.-x(r. : L -P]dt and P(r--t) O, dt

ri x=r, an prt 0, V:.

(see Pardoux [4O ]. Theorem 5.5 will hold for these cases, but we will

not work out the details.

Secondly, the case

f" + f2 = -h2 + a(2z)x'+)2 + b + c 2 c 0
(2ox+B) 2  c >_-4

on an interval with x0  -3/2a as an endpoint Poses analytical

difficulties, both because of the variety of cases f(x) - , X-X"

- R, to be analyzed and because of the singularity

c in f' + f2. In the interests of simplicity, we will not
2 x

treat this case.

From now on, we will be interested in solving Zakai's

equation for the problem of filitering a signal 'J, solving, 5.58)

under the asc.mptions:
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(i) h is linear or quadratic

(ii) f solves one of (5.4 ) - (.51)

(iii) U= (ro,r1 ) is the full domain of defini:ion (H)

of f

iv) 1f f  solves "5.50) with c # 0, c > - -, neither

endpoint r i equals x

From the lenmmas presented above, one can conclude that if ri is a

finite boundary, it is of entrance type, and f(x) - as
,x-r

iSx r ri.

-Zakai's equation for any one of these problems is:

i2

- p(x,t) = 1 - - i2() , p(x,t ,

+ y(t)h(x)p(x,t)

lia (-I-- 2f(x)} p(x,t) = 0 if r is a finite (5.2
xxr

(entrance) boundary.



.4e give a bri.ef, fcrm~al derivati on of this 'or :he case <

For g C') define

a%(g) LE Eog(,< )Lt!FY. 9(z)p(z,t.)dz

If g E.0(B),

dc,(g) =~(Bg)dt + :7 (hg/dy(t) ,(~4

(Kn -aF5]). By integrating the tr---n t (3g) by parts we c-erive

r

-(g(z)[B*p(z,4t)dt . (z)p(z,t)dy(t)]dz
r 0

+ eC (X)g, (e-C ((x ,t+2 (x 0 e

g)-, 2-f:lx)]O(X,t)1

"x ~ 0+

:n or-er tnat this hold -,or genera, £(y we recu-re

= 2px :>t~.;P(x:C."'
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lim g'(x)p(x,t) = '
x-r.

im g(x)[2- -,(x)]p(x,t) = 0 (5.57
x-r .

For g a D(B) one can easily show that

rm - 2f(x)}p(x,t) = 0
x-r.i

implies both (5.67) and (5.66). When writing (5.65) with 1() inszead

of dy(t) one must add the Wong-Zakai correction term -1/2 h2(x) to

3*. This proves (5.52) - (5.63).

Rather than ,vcrk with (5.62) directly it is convenient to

invoke the "gauge" transformation

oF(X : er f (z )dz

eF(x) > zdz r - (ro,r I )

( : e/2--(xl)

and write

p(x,t): e F(X)q(x,t)

A calculation shows that

3Q _ 2 - - 2 . ;. . .. .

.1 12 2) - .:2 >:x, t'

.!x
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lim eF ( x ) [- f(x)]q(x,t =0 if r i is an entrance
boundary 

(5.69)

It is this equation that we seek to solve by Lie algebraic

methods. Let A = 1 3 _Iff 2+h2] and call fAh}LA the

algebra of (5.68). (A,h}LA is isomorphic to (L0,h}LA by the

map B - e F B e-F from {A,h}LA to {L0,h}LA. This map also trans-

lates evolutions; that is if

tA

then

lim 1[eFetAeFEe F-
tio e e D

Thus the Lie algebra analysis may be carried out on (5.68).

The technique we want to explore is that of solving (5.68)

by 9(t)A 9 t)X2...gd (t)X d

q(x,t) = (e e ..2e qO)(X) (5.70)

g1 (t)A

We place e first in this series because we need an evolution

that must, in Qeneral, satisfy boundary conditions. It is not usually

possible to do this with first order operators, and A is of second

order. Different second order operators in {A,h}LA might be chosen

instead of A, but this will make no difference in what follows.
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The natural semicroup to associate with A is that

determined by the boundary conditions (5.69). 4e will define :his

semigroup on L2(U). Thus let

D(A) ={ pL2(U)j A ,,L 2(U), .(ri) = 0, ri  an entrance

boundaryl

Assume r. is an entrance boundary. The condition .(ri  0

does not look like (5.69), but it is in fact equivalent. Since

Aw L 2 (U),

x

d + ['+ 2+h2 s sC'dX ) + (s)(s)dsdx dx ' x~ r r2

and L2(U)

Since eF(x) , kx (x-ri) for some constant k we see that

lir eF'') d .C(xcax
x-r.

Thus 1r e'(<) rd - f, eF(X
Ldx -x i e

x-r. x-r11

- lim kx k( 0.
x-r •

We ncw state the main tneorem.

-'e,'e'n sa7.sy :ne iyc:.... , s::c:



U is bounced or semi-infinite

(i) -A is self-adjoint and bounded-belw on , and hence

generates a semigroup e Also, A has a discrete sectrrr .

(ii) Let 0'(A) = {finite linear combinations of eigenva>,es of A

tA wn tA
e h a ( :- F ad A]n h)e . for D E D'(A), 0 C

n0O

Proof Assume, without loss of generality, that h(x) x in e

linear case, and h(x) = x2 in the quadratic case. It is easiest

to prove the theorem separately for the cases U boundeJ and J

semi-infinite.

Let U be bounded. Then

2 d 2  21 f, + f 2A = f - f+f + h2'

and L 2+h is a bounded, C -unction on U. Rec

that (H) excludes the case in which 7 may have a slncular-it'i

in A standard calculation frcm zi =e-ent aT eqa: t.eor.

(Coddington and Levinson F 3])shows that A. is seif-adjoint on

D(A) and -A is bounded below. Further, the theory of se7 -acjcin*,

differential ooerators on bcunded interva'-- 4mces tr - :2-

has a discrete srcec-r'.m s.t., "n n-,
q-..

-an-, a

' . .... .• -,, 4 . - ,, m *Z.2,,



- 165 -

vectors ( oddington and vinson F

tA nt

(e P)(x) = e ;,n(X), (y)](y)dy (5.721
- fl=OiU

(Coddington and Levinson [8 ]). One now proves (ii) case by case.

To illustrate we do the example h = x2  and 1, + f=2 _ h2 + ax2  c.
,,2 d T

The estimation algebra tA~:LA is then spanned by ":Ax X; I

and has commutation relations

[A, x 2 : 2x d + 1

[A, x d] = 2A + 2a x2 + cdx

From these, one readily derives

rn ad Anh 1--
n40 ]n h cosh 2yat - ]A Lcosh 2 ,at.x2

+ (sinh 2,at.x d , .

g(t) : 1 sinh 2y*at + cosh 2at- c
2v ~2a 2a

low le us chec' 15.72' cn n Obsere first that

I l

e ,, = I
- "1 ",q~ -



and ,<1nr
' i . itheriise , 7 =C7

0". Thus

S n
tn rad Ainh) tA

n!

e nt a- 1 /2 (sinh 2,"a t)x ..;'(x)7

4 . a ( C o s a t-t c s h 2 a t ) e n n

This will not satisfy the boLndary ccnditions :(r), C j 1

because of the '"x, term. Thus ,..73; cannot ecua7 e h., 5ice
1e3,.,ow.eh;x

by (5.72 ) ,( e )ri i 01 -, 'low let. ''x' -n r,
n1l

Then

tn rLad A'-h ' h= e(7.-- .d j e .. ri  0. i 0,1

n=O

only if

j-O

(see 5.73). Since the X. are unequal this cannot happen jnless

j = 0, j=l -,n. The statement analogous to (ii" with r replace,'

by L is aiso true. The othe- cases "nvol i4- tcunce, areox

proved in the same manner.

'Icw lo' ,' e : -S , s
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case can only :,:cur if f' + f 2 =ax 
2  bx - c and a > 0 at th~e

very least. Hence the operator A is of the form

1 d2  I I 2 +a 2 x + cT - 2 -2x a
dx

and 1 im 1[x2 'a2 bxc C .it is then knov.n that A is seif-adjoint
22

on D(A) zA L (U),- (r) 0'. with a strictly decreasing

sequence of eigenvalies \.. The analysis then proceeds exact!,y as

for the absorbed Brownian motion case. (Indeed by a transformation

z = vx + S, y'(t) = e2(t), (5.58) with boundary condition q(,)=0

becomes the Zakai equation for absorbed Brownian motion). The proof

for the case U =(--,r) r. < w, is the same.

Remarks

(i) Theorem 5.9 implies that the crucial 1lie algebra iCentity :

of section 5.1 fails, and hence that the method (5.70) of solving

(5.68) will not work. The result is that, exclusive of tne cases nc.

satisfying the assumptions (H) the Lie algebra technique work.; onl,/
for the case treated by Bene in nhicn isaloa souino

f' + , ax2  bx + c.

(ii) The one ncn-riaorous Point in the atove :alcuiaticn was :7.e

teriiation of Zakails equation. :- owever, the ecua-.4cn 5.-3 r

- (,t can te :-iqcr-.us: e-veV:e:/e:

MIN
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is assumed. indeed if (,,P is a probability space cn which

3(t) and y(t) are independent Brownian motions; it can be shown by

change of measure techniques that

t t

q(x,t) = (expE h(x0+b(s))dy(s) - [f +f2+h ](x0+b(s))ds]

0 0

X t r (t)+x r(xt)

where = inf'tjxo+B(s) . Uc;. and r(x,t, is the density

B(t) + X0 (Liptser and Shiryayev [28]). The techniques of 7akai

[47', applied to this object yield (5.63),and the bouncary ccnditions

q(ri,t) = 0 at finite boundaries ri are clear. The details ili

not be presented.

It is in trying to justify Zakai's equation rigorcusl that

cthe singularity 'at x,= 3/2a causes trouble and is wnv Ne
(2ax+)2 xo

excluded the case from the analysis of theorem 5.5. Nevert,,eiess,

one presumes sakai' s equation holds and applies the method .- tnecrem

5.5 with careful attention to what happens at x,, the same _onclusion

about e tAh will follow.

.,iii) 7ror the remark on page /5S , the analysis o- theore- .5 car

be a~plied to the case vhen any one of the boundar'i ... n,. .

either instanzaneously reIlc~in: :n curel, sbs

'i/j "n tneorem 5.-, 5 s in :ne aco:-2_e. a ...- = -c'

se,: r C a 7na i-

cc~nta' n --n a~ ze - ina r;tr:

.. .z. . . e l - ! : , .r..- = - -,



In our analysis of Lie algebraic -:ecnnioues we.ecl lde .

number :If ;ossible, finite dimensicr ai examples -y res:ric:in ci.r-

selves to problems satisfying hypothesis (H,. Hcwever, remarks 2

(iv) state that the results of theorem 5.5 are '.rue, at least b.

formal arguments, for any excluded case for which the conditional

distribution can be found by solving Zakai's equation for with

(possible) boundary conditions. Thus, we conjecture that no otner

examples beyond those of Beres can, in fact, be solved by tne methoc

developed in this chapter.



- 170 -

3ZBLICGRAPHY

1. Benes, V., "Exact Finite Dimensional Filters for Certain 3iffusons
with Nonlinear Drift," to appear in S"ochastcS, 1980.

2. Brockett, R. W., "Lie Algebras and Lie Groups in Control Theory,'
In Geometric Methods in Control Theory, (D.C. Mayne and R. W.
Brockett, e.d) Reidel, Dordrecht, Holland (1973).

3. Brockett, R. 4., "Volterra Series and Geometric Control Theory,"
Automatica, Vol. 12, 1976, pp. 167-176.

4. Brockett, R. W. "Nonlinear Systems and Differential Gecmetry,"
Proceedings of the EEE, Jan. 1976, op. 61-72.

5. Brockett, R. 4., "Some Remarks on Finite Dimensional Nonlinear
Estimation," Journees sur L'Anal ise des Sistems, Bordeaux, l371.

6. Brockett, R. W. "Classification and Equivalence in Control
Theory," Proceedincs, 18th IEEE Conference on Decision and Control
1979, Ft. Lauderdale, Fla.

7. Brockett, R. W., and Clark, J. M. C., "Geometry of the Corditicnal
Density Equations," Proceedincs, int. Conf. on Analvsis and
Otimization of Stochastic Systems.

3. Coddington, E. and Levinson, N., Theory of Ordinary Differentia7
Eauations , McGraw Hill, New York, I'95.

9. Davis, M. H. A., Linear Estimation and Stochastic orr~ l
Chapman and Hall, Londcon, 1_,-7.

10. Davis, M. H. A., :'A Direct Proof of innovations/Observations
Equivalence for Gaussian Processes," HH-E Trans. infor-aticn
Theory, 7ol. 2 4, 2, March, 1978.

11. Eterno, J. S., Nonlinear Estimation and Phase-Lock Looos, PhD
Dissertation, Deot. of Aeronautics and Astronautics, 197, Y"IT.

. Feller , 4., 'The :ara olic Di feren tial E:ua-io ns ano .
Associate: Semigroup of Transfor-,a-icns," Ann '.a. :.
1952, o. -3 -5 9.

. a , Gmon, -e i man an - nn e er, 1m ze - : -:c"

e s.re, - "- ''.

set-= ": . .... ... .-



-171-

14. Fleming, A. and Rishel R ., Cetermi nistic and Stochas-.ic -otimna',
.ontrol Soringer-Verlag, New York, 1975.

15. Fujisaki, Kailianpur and Kunita, 'Stochastic Dif-ferentiall
Equations for the Non Linear Filtering Problem,' Osaka J
9, 1972, 19-40.

16. Geesey, R., Canonic, al Reoresentations of Second OCrd-er Processes
with Aoolications, PhD Dissertation, Depart.ment of Electrical
Engineering, Stanford University, 1969.

17. Gihman, 1. 1. and Skorohod, A. 11., Stochastic Diffe-rentilal
Equations,. Sp~ringer-VIerlag, New York, 1972.

13. Hide, T. "Nonlinear Brownian Functifonais", ?'oceedincs ]lSth
IEEE Conference on Djecision and Control, Ft. Laucer ale, Fla.
19 7 9.

19. Hida, T. and Kallianpur, G., "The Square of a Gaussian Markoi
Process and Nonlinear Prediction," J3. of Mul t. Anal . 5 , 19,

Pp451 -4 61.

20. 1Ito , K. , "Mul ti ple Wi ener I ntegral s ," J . Math . Soc. ,a pan , 3,
1951 , pp . 137-169.

21. Kallianpur, G. , "The Role of Reproducing Kernel1 Ailtert- Spaces in
the Study of Gaussian Processes," in Advances in P-robabilitv n
Related Tooics, P. Neg, ed., New York, Marcel Dekker, 1970,
49-3..

22. Kallianpur, G., and Striebel , C., "Estimaticon o~f Stocnastc,,
Systems: Arbitrary System Process with Additive ~i Nise
Observation Errors," Ann. Math. Stat. , 39q, 1 962, pp. 70-33-Sd

23. Kal Iianpur , Gl'. and Striebel C, "Stochasti c Di1ffe-ren--ial Sc-uacions
in Stochastic Estimation Probi ems ," Mul tivariate Ana Livsis
Academic Press, 1969.

24. Kaliman, R. and Sucy, R., "New Results in Linear Filtering and
Prediction "Theory," J. 3asic Engr. (Trans .A>), Vol . 33-D,
1961, -13

25. K jn ita, s. , ysmo t c E :eav io r *-:e cn r,!1e a- r n
Erro rs o f !a r k v 0r, c es s es, c 4r7a-I :, au sm~-~~ 4r 1*

,197', pc. 1V



- 172

26. M!agnus, W., and Cberhetninger, 7., .orma as an! Thecrems for ire
Soecial Functions of Mathematizal -isics, Springer Verlag,
New York 1365.

27. Mandl, P., Analytical :reatmen: of Cne-imersicnal "arkov Processes,
Springer Verlag, 968.

23. Liptser and Shiryayev, Statistics of .andom Processes, an:
Springer Verlag, 1977.

29 Marcus, S. T. Estimation and Anal/ss of No&inear Stectast:o
Systems, Report ESL-R-601, Electronic >'= -ms laooraory, >1T, i7.

30. Marcus, S., Miter, S. K. and Ocone, ., Finite Diensicnal
Nonlinear Estimation in Continuous and Discre:e Time, r' P-'ceednrzs ,

:nt. Conf. on Anal. and ODt. of Stochastic Systems, xfor , M.

31. Marcus and Willsky, "Algebraic Structure and Finite Cimensicna,
Nonlinear Estimation", SIAM. J. Math. Anal. 9 (2), 1972, pp.
312-325.

32. McKean, H. R., "Wiener's Theory of Nonlinear Noise," Stochastic
Differential Ecuations, SIAM-AMS Proceedings, American Matn.
Soc., ?ro'idence, R. 1., 1973, pp. 131-209.

33. Meyer, P A., Un cours sur les inteales szochastyues in
Seminaire de Probabilites X, Sprincer Lecture NWtas 51l, 17.

34. Miller, K. S. Multidimensicnal Ca-ssian .istritu-ions ,oin
Wiley/, 1GEE.

35.. .itter, S. K., "Filtering Theory and 'uantm Fields," :
aopear in Asterisque.

36. Mitter, S. K. and Ocone, D., "Mul't le Integral Ex-oansions !:r
Nonlinear Filtering, "  Proceedings of re 11th _E :o r....-
on :ecision and Control, Ft. Lauderdale, Fla. 1?7?.

37. Nelson, E. , "Analytic Vectors," Ann. a. 72, 19, pp. :72-:5.

25. Nelson, E., 'he Free 'Varkov FieTd", -, 'nctonal -natv<.
13723, pp. T-27

39. Neve', j., "Sur I7esperance ::ndi:i- T za r .... aic,-
mouve'men- 3rc,, ie. Orr._nn , ,0 -0 ____ -__'-
V'ol. X::, 2, "75, c. 6 ,.



- 173 -

-1C aroux, E., "Stochasic Par:ial ifferen:,a : ua: cn s n
-Ierir, of Diffusicn Prccesses," Stochastics, 7o1. ,

1979, pp. 127-167.

41. Reed, M. 7 nd Simon, 3., Methods of athemazic:1l Physics 1:
Functional Analysis, Academic Press, New York, 977

42. Reed, M. and Simon, B., Methods of Mathematica1 Physics ;I
Fourier Analysis, Self-Adjointness, Academic Press, New York,
1975.

L3. Segal , T "Construction of Non-Linear 'ocal, ' uantJm -rocesses: P.
Ann. Math., Vol. 92, No. 3, 1970, 162-181.

44. Wei, J. and Norman E., "On The Glo;al Representation of te
Solutions of Linear Differential Equations as a ?roduct of
Exoonentials," Proc. Am. Math. Soc., April, '64.

45. Aiener, N., Non!inear Problems in .Random Theory, W iley, New York,
1958.

46. ',ong, E. , Stochastic Processes in 7nformation and Dynamical Systems,
M c-raw-Hill, 1972.

47. Zakai, M., "On the Optimal Fiit ring u- Diffusion Processes,"
Z. Wahr, verw. Geb., il, 1969, pp. 230-243.

48.. /an Trees, H . , De cectIon, - -st ati n, and adt- i a c r -hec rv,
'ew York ,'ilev, i258- C71, Cv

19. Lamperr-i , Stochas "- c Processes, colieo --'a:e.a =--ica c ences,
Vol. 23, Sprincer-Verlac, New YOrk, 177



-174

APPENDIX 1H~CEEU hC HE~

Wiener's homogeneous chaos theory providesa method of repre-

senting functions of Gaussian processes by certain infinite expansions,

the ter-ms of which are the prototypes of multiple stochastic integrals.

This appendix presents tne fundamental motions of the theory; the

treatment follows that of1 Kallianpur F21 1.

The situation is as follow.,s. Let T be a separable,

topological space. fx(t) t 7 will denote a mrean 7ern, Gaussian pro-

cess on T with a covariance function c(t,s) = Ex(t)x(s) that is

Jointly continuous in t and s. Let the Probability space of the

process be (:', F, P) and letI A = Kx~s)'s e T' Homogeneous chaos

theory concerns itIs elf wi th the s truc ture o f L 2:A?) conrs i Je red a s

a Hilbert space aith inner product <;, > EE< t se Cst.bi

2(

a useful orthonormal basis for L-\(2,A,p).

We present the basic construction. 'let

H = par, { 2 X(t.i)ti E T, ~I<

(' ; eno*tes closure in th e no rm o F L7: A. :i te S-tsac=

of LAP consisting o linear functi4orals o-.

seoarabl, ecae cf -ne s eoaralb..; 41 arc .. ni~t

an:.s , r ence H "a r to rtrrne o ormr, n a aS
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' o,/n om a s of or-er < , in :e v arabes

ii) ? U P

D Pii) n q Pn- ri n n-I'

G is called the n'~ homogeneous chaos of :x( t)'

n

vicently, P =in which denotes a drec:
n=O n

sum of 'Hibert spaces. 7hoe Gn tus cive a -r {xt,: e Ty

decomposition. of P. To provide orthoncr-ma d forte n

introduce the "Hermii7 2 pol1ynomi'als , 'ahichu as it 1i1 t e s een a r

nat'ural i ass-ciated to ':a u ssan p ro cess--es.

CeFinit vion , T n n i noiah s d.2e as ern

= x = >) eX/2  dn -S /
n:

n/ I'l d

-thuscc eneius oo-Sxomars 4:)n)

, o r e 
e r

7, 1
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is an ort honormal basis of G--

ii) Pis dense in L2(,A,P). Thus

2L (Q,A,P) = : ® -
n=O

and if L L2 (,A,P)

= XI"'Xr) \"\

n m I -m r  111 •...m r

n -, ., r .. r m +..-+m rn, m >0 p' ir ise

unequal'"
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APPENDIX 2. SOME CONCEPTS FRC! oPER.,R TECRY

The definitions and tneorems follow Reed and Simon rlj,42 .

Let A and B be linear operators on dense domains D

and D' respectively in a (complex) Hilbert space H. Let (,- ) denote

the inner product in H.

Definition A.2.1

(1) A is ciose - if its graph ,D- is a closed

subset of H x H w.r.t. the norm + = '

(2) B extends A if DC D' and Be A , Z D.

(3) A7 is the smallest closed extension of A, assuming

a closed extension exists.

(4) Spectrum of A = r(A) - {; xI-A bijects 0 onto

Definition A.2.2

(1) D(A*) = Z H' : s . (A.,: = .

For D(A*), A*:)

(2) A is symmetric if $A,:- = ( ,A;) for all 2,: - .

(3) A is seif-aaJoint if A , , that is if A is

sayretr , and C(A*) =.

(.) ,A is essen:'i.. , e e-- c r: . 0 s -> O.

or Se - - : - - -e -a '
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boundec 3orel functions on z'A) to bounced 14near ooerA:ors c

such that

(f) ¢(g) = (g

and i n (x) - x pointwise, h X) < x for all x and n.n n

lim (h n A , V D.

Example If -A is self-adjoint and bounded below (i.e.,

((-A) (x,-), x > -- , e(-t)(-A) et'4 :(e x) is well defined by the

spectral theorem for t > 0. One can show it is a bounded semi' roup

on H.

Definition A.2.3

e D is an analytic vector for A i ,n or al
n n

and n has a positive radius of conversence.n=0

Theorem 2..2.2 (Nelson F 38B

Suppose that A is symmetric and C 4s invariant uncer A

and contains a dense set of analytic vectors. Then A is essentialy

self-adjoint on 3.
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Let G be a finite dimensional Lie algebra, and G its

associated simply connected group.

Theorem A.2.3 Let T(G) represent G by skew-symmetric operators

on a domain D of H. If there exists X E T(G) such that iX (on

D) is not essentially self-adjoint, then G has no unitary

representation on H. Further if Xls"-Xd is a basis of

T(G), X 2+..+X2 will not be essentially self-adjoint on D either.

For the notion of representation in this theorem see definition 5.1

in chapter 5.
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